Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Korean J Parasitol ; 60(4): 229-239, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36041484

ABSTRACT

The high percentage of Vermamoeba was found in tap water in Korea. This study investigated whether Vermamoeba induced allergic airway inflammation in mice. We selected 2 free-living amoebas (FLAs) isolated from tap water, which included Korean FLA 5 (KFA5; Vermamoeba vermiformis) and 21 (an homolog of Acanthamoeba lugdunensis KA/ E2). We axenically cultured KFA5 and KFA21. We applied approximately 1 × 106 to mice's nasal passages 6 times and investigated their pathogenicity. The airway resistance value was significantly increased after KFA5 and KFA21 treatments. The eosinophil recruitment and goblet cell hyperplasia were concomitantly observed in bronchial alveolar lavage (BAL) fluid and lung tissue in mice infected with KFA5 and KFA21. These infections also activated the Th2-related interleukin 25, thymic stromal lymphopoietin, and thymus and activation-regulated chemokines gene expression in mouse lung epithelial cells. The CD4+ interleukin 4+ cell population was increased in the lung, and the secretion of Th2-, Th17-, and Th1-associated cytokines were upregulated during KFA5 and KFA21 infection in the spleen, lung-draining lymph nodes, and BAL fluid. The pathogenicity (allergenicity) of KFA5 and KFA21 might not have drastically changed during the long-term in vitro culture. Our results suggested that Vermamoeba could elicit allergic airway inflammation and may be an airway allergen.


Subject(s)
Acanthamoeba , Amoeba , Acanthamoeba/genetics , Amoeba/genetics , Animals , Bronchoalveolar Lavage Fluid , Eosinophils , Inflammation , Mice , Water
2.
J Prosthet Dent ; 128(4): 729-734, 2022 Oct.
Article in English | MEDLINE | ID: mdl-33832762

ABSTRACT

STATEMENT OF PROBLEM: Scannable healing abutments are a convenient option to facilitate impression making for implant-supported restorations. However, studies evaluating the accuracy of the impression technique with scannable healing abutments are lacking. PURPOSE: The purpose of this in vitro study was to evaluate the accuracy of implant impression techniques with scannable healing abutments. MATERIALS AND METHODS: A partially edentulous mandibular dentiform model was fabricated with an epoxy resin, and implants were placed in the mandibular right second premolar and first molar areas. A maxillary dentiform model was then fabricated, and both models were mounted on an articulator. Scan data were obtained from the mounted models and set as the reference scans. The experimental models were divided into 4 groups (n=10). The conventional pick-up impression technique and definitive casts were used in group CI. The scan data from the definitive casts were obtained with a 3D model scanner. An intraoral scanner with a digital body scan was used in group DS. Group MS yielded definitive casts with dual-arch impressions with scannable healing abutments. The fabricated definitive casts were mounted and scanned with a 3D cast scanner. Intraoral scanning with scannable healing abutments was used in group IS. In all 4 groups, the interarch relationship in the maximum intercuspal position was obtained by scanning the facial aspect. The center of the implant head was set as a measurement point for linear intra-arch deviations and implant angle deviations. The mesiopalatal cusp tip of the maxillary right first molar was used to calibrate the linear interarch deviations. The data obtained from each group were compared with the data from the reference scan. As the data were not normally distributed, the Kruskal-Wallis test and Bonferroni correction were used for the analysis (α=.05). RESULTS: Group MS exhibited significantly higher deviations in linear intra-arch and implant angles compared with the other groups (P<.05). No significant difference was found between the groups in linear interarch deviations (P>.05). CONCLUSIONS: The accuracy of intraoral scanning with scannable healing abutments was comparable with that of conventional pick-up impression techniques and digital scans with scan bodies. However, model scanning with scannable healing abutments may not be clinically acceptable for implant impressions.


Subject(s)
Dental Implants , Mouth, Edentulous , Humans , Dental Impression Technique , Dental Impression Materials , Models, Dental , Computer-Aided Design
3.
J Adv Prosthodont ; 13(2): 117-125, 2021 Apr.
Article in English | MEDLINE | ID: mdl-34025960

ABSTRACT

PURPOSE: The aim of this study was to evaluate the labio-lingual alterations of the alveolar bone where the implant was placed immediately after tooth extraction. MATERIALS AND METHODS: Implants were placed immediately after tooth extraction on anterior alveolar ridges in the maxilla and mandible. The pin-guide system was used to help determine the location and path of implants during the surgical process. The horizontal distance from implants to the outer border of alveolar bone was measured at the rim and middle of the implants in the cone beam computed tomography images. The alteration of alveolar bone was evaluated comparing the horizontal distances measured immediately after surgery and 3 months after surgery. RESULTS: The results show that more resorption occurred towards the labial bone than the lingual bone in the maxilla. A similar amount of labial and lingual bone resorption was observed in the mandible. CONCLUSION: Considering the horizontal alteration of alveolar bone, labio-lingual positioning of the implant towards the lingual bone in the maxilla and at the center of the alveolar ridge in the mandible is recommended when it is placed immediately after tooth extraction.

4.
J Adv Prosthodont ; 12(5): 259-264, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33149846

ABSTRACT

PURPOSE: The aim of this study was to investigate and compare the color stability of provisional restorative materials fabricated by 3D printing, dental milling, and conventional materials. MATERIALS AND METHODS: For the experimental groups, two commercially available 3D-printing provisional resins (E-Dent 100; EnvisionTEC GmbH, Germany & VeroGlaze™; Stratasys®, USA), two dental milling blocks (PMMA Disk; Yamahachi Dental Co., Japan & Telio®CAD; Ivoclar Vivadent AG, Liechtenstein), and two conventional materials (Alike™; GC Co., Japan & Luxatemp automix plus; DMG, Germany) were used. The water sorption and solubility test were (n=10, respectively) carried out according to ISO4049:2000 (International Standards Organization, Geneva, Switzerland). For the color stability test (n=10), coffee and black tea were used as staining solutions, and the specimens were stored for 12 weeks. Data were analyzed by one-way ANOVA and Tukey's HSD using SPSS version 22.0 (SPSS Inc. Chicago, IL, USA) (P<.05). RESULTS: Alike and Veroglaze showed the highest values and Luxatemp showed the lowest water sorption. In the color stability test, the ΔE of conventional materials varied depending on the staining solution. PMMA milling blocks showed a relatively low ΔE up to 4 weeks, and then significantly increased after 8 weeks (P<.05). 3D-printed materials exhibited a high ΔE or a significant increase over time (P<.05). CONCLUSION: The degree of discoloration increased with time, and a visually perceptible color difference value (ΔE) was shown regardless of the materials and solutions. PMMA milled and 3 D-printed materials showed more rapid change in discoloration after 8 weeks.

5.
J Adv Prosthodont ; 12(1): 33-37, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32128084

ABSTRACT

PURPOSE: The purpose of this study is to evaluate the effects of type of magnet attachment and implant angulation in two implant overdenture models. MATERIALS AND METHODS: Magnet attachments used in this study were flat and dome types (MGT5515, MGT5520D, Dentium Co., Seoul, Korea). Two implants with keepers were inserted in the resin blocks at a distance of 24 mm. For the first model, the implants were parallel to the vertical and perpendicular to the horizontal; for the second model, both were angulated 5 degrees to the mesial; for the third model, both were angulated 10 degrees toward the mesial. The retentive force was measured in both vertical and lateral directions. Statistical analyses were performed using SPSS software version 22.0 (α=.05). RESULTS: The flat type magnet attachment showed the highest lateral retentive force in the 20° divergent group (P<.05) and the dome type magnet attachment showed the highest lateral retentive force in the parallel group (P<.05). The vertical and lateral retentive force of the dome type magnet attachment was greater than that of the flat type magnet attachment in every direction (P<.05). CONCLUSION: Within the limitations of this study, the dome shape magnet attachment can resist vertical and lateral retentive force more superiorly than the flat type magnet attachment, regardless of angle, in the mandibular two implant model.

6.
J Adv Prosthodont ; 11(1): 32-40, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30847047

ABSTRACT

PURPOSE: The purpose of this study was to compare mechanical and physical properties of injection-molded thermoplastic denture base resins. MATERIALS AND METHODS: In this study, six commercially available products (VA; Valplast, LC; Lucitone, ST; Smiltone, ES; Estheshot-Bright, AC; Acrytone, WE; Weldenz) were selected from four types of thermoplastic denture base materials (Polyamide, Polyester, Acrylic resin and Polypropylene). The flexural properties and shore D hardness have been investigated and water sorption and solubility, and color stability have evaluated. RESULTS: For the flexural modulus value, ES showed the highest value and WE showed significantly lower value than all other groups (P<.05). Most of experimental groups showed weak color stability beyond the clinically acceptable range. CONCLUSION: Within the limits of this study, thermoplastic denture base resin did not show sufficient modulus to function as a denture base. In addition, all resins showed discoloration with clinical significance, and especially polyamides showed the lowest color stability.

7.
J Adv Prosthodont ; 10(6): 408-414, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30584469

ABSTRACT

PURPOSE: This study aimed to assess the effect of non-thermal plasma on the shear bond strength of resin cements to polyetherketoneketone (PEKK) in comparison to other surface treatment methods. MATERIALS AND METHODS: Eighty PEKK discs were subjected to different surface treatments: (1) Untreated (UT); (2) Non-thermal plasma (NTP); (3) Sandblasting with 50 µm Al2O3 particles (SB); and (4) Sandblasting + Non-thermal plasma (SB+NTP). After each surface treatment, the contact angle was measured. Surface conditioning with Visio.Link was applied in all groups after pre-treatment. RelyX Unicem resin cement was bonded onto the PEKK specimens. After fabrication of the specimens, half of each group (n=10) was initially tested, while the other half was subjected to thermocycling (5℃ to 55℃ at 10,000 cycles). Shear bond strength (SBS) testing was performed using a universal testing machine, and failure modes were assessed using stereomicroscopy. The SBS results were analyzed statistically using one-way ANOVA followed by Tukey's post hoc test. Independent t-test was used to examine the effect of thermocycling (P<.05). RESULTS: The highest SBS values with or without thermocycling were observed with PEKK specimens that were treated with SB+NTP followed by the SB group. The lowest SBS results were observed in the UT groups. CONCLUSION: The shear bond strength between PEKK and resin cements was improved using non-thermal plasma treatment in combination with sandblasting.

8.
J Adv Prosthodont ; 10(5): 361-366, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30370027

ABSTRACT

PURPOSE: The aim of this study was to evaluate the effects of relining materials on the flexural strength of relined thermoplastic denture base resins (TDBRs). MATERIALS AND METHODS: For shear bond strength testing, 120 specimens were fabricated using four TDBRs (EstheShot-Bright, Acrytone, Valplast, Weldenz) that were bonded with three autopolymerizing denture relining resins (ADRRs: Vertex Self-Curing, Tokuyama Rebase, Ufi Gel Hard) with a bond area of 6.0 mm in diameter and were assigned to each group (n=10). For flexural strength testing, 120 specimens measuring 64.0×10.0×3.3 mm (ISO-1567:1999) were fabricated using four TDBRs and three ADRRs and were assigned to each group (n=10). The thickness of the specimens measured 2.0 mm of TDBR and 1.3 mm of ADRR. Forty specimens using four TDBRs and 30 specimens using ADRRs served as the control. All specimens were tested on a universal testing machine. For statistical analysis, Analysis of variance (ANOVA) with Tukey's test as post hoc and Spearman's correlation coefficient analysis (P=.05) were performed. RESULTS: Acry-Tone showed the highest shear bond strength, while Weldenz demonstrated the lowest bond strength between TDBR and ADRRs compared to other groups. EstheShot-Bright exhibited the highest flexural strength, while Weldenz showed the lowest flexural strength. Relined EstheShot-Bright demonstrated the highest flexural strength and relined Weldenz exhibited the lowest flexural strength (P<.05). Flexural strength of TDBRs (P=.001) and shear bond strength (P=.013) exhibited a positive correlation with the flexural strength of relined TDBRs. CONCLUSION: The flexural strength of relined TDBRs was affected by the flexural strength of the original denture base resins and bond strength between denture base resins and relining materials.

9.
Implant Dent ; 26(1): 59-65, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27819849

ABSTRACT

PURPOSE: To investigate the effect of implant diameter on fatigue strength using static and cyclic load test. MATERIALS AND METHODS: Four different implant systems-SuperLine (Φ4.0), NRLine (Φ3.1), SlimLine (Φ2.8, Φ2.3), and (Dentium)-were grouped by implant diameter. A static load test was conducted with 5 specimens for each group using a universal testing machine to measure the ultimate failure load (UFL). With 80% of the UFL in the weakest group, the starting load for a cyclic load test was determined and the test was performed with 8 specimens for each group. All tests were conducted according to ISO14801 (2007) until implant failure occurred. After dynamically loaded, each specimen was sectioned and stereo-microscopically examined. The failure modes of each implant system were classified. Static and cyclic load test data were respectively analyzed after the test of normality, with the level of significance at P = 0.05. RESULTS: In the static load test, the higher maximum load of the standard-diameter implant was significant compared with the recorded narrow or mini-implants (P < 0.05). The yield strengths of the Φ2.8 and Φ3.1 implants were significantly greater than that of the Φ2.3 implant (P < 0.05). In a cyclic load test, the mean number of cycles until implant failure occurred was recorded for each specimen. The value for the Φ4.0 implant was significantly greater (P < 0.001). CONCLUSION: Implant diameter has an effect on the ability to withstand both static and cyclic loads within Dentium implant systems, The UFLs and fatigue cycles decreased as the implants diameter became smaller.


Subject(s)
Dental Implants , Dental Restoration Failure , Dental Implants/adverse effects , Dental Implants/standards , Dental Stress Analysis/methods , Humans , Weight-Bearing
SELECTION OF CITATIONS
SEARCH DETAIL
...