Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(7): e0305864, 2024.
Article in English | MEDLINE | ID: mdl-38959272

ABSTRACT

This research aims to establish a practical stress detection framework by integrating physiological indicators and deep learning techniques. Utilizing a virtual reality (VR) interview paradigm mirroring real-world scenarios, our focus is on classifying stress states through accessible single-channel electroencephalogram (EEG) and galvanic skin response (GSR) data. Thirty participants underwent stress-inducing VR interviews, with biosignals recorded for deep learning models. Five convolutional neural network (CNN) architectures and one Vision Transformer model, including a multiple-column structure combining EEG and GSR features, showed heightened predictive capabilities and an enhanced area under the receiver operating characteristic curve (AUROC) in stress prediction compared to single-column models. Our experimental protocol effectively elicited stress responses, observed through fluctuations in stress visual analogue scale (VAS), EEG, and GSR metrics. In the single-column architecture, ResNet-152 excelled with a GSR AUROC of 0.944 (±0.027), while the Vision Transformer performed well in EEG, achieving peak AUROC values of 0.886 (±0.069) respectively. Notably, the multiple-column structure, based on ResNet-50, achieved the highest AUROC value of 0.954 (±0.018) in stress classification. Through VR-based simulated interviews, our study induced social stress responses, leading to significant modifications in GSR and EEG measurements. Deep learning models precisely classified stress levels, with the multiple-column strategy demonstrating superiority. Additionally, discreetly placing single-channel EEG measurements behind the ear enhances the convenience and accuracy of stress detection in everyday situations.


Subject(s)
Deep Learning , Electroencephalography , Galvanic Skin Response , Stress, Psychological , Virtual Reality , Humans , Electroencephalography/methods , Female , Male , Adult , Stress, Psychological/physiopathology , Stress, Psychological/diagnosis , Galvanic Skin Response/physiology , Young Adult , ROC Curve , Neural Networks, Computer
2.
BMC Res Notes ; 15(1): 217, 2022 Jun 23.
Article in English | MEDLINE | ID: mdl-35739605

ABSTRACT

OBJECTIVE: This study aimed to analyze the effect of object-location binding on the visual working memory workload. For this study, thirty healthy subjects were recruited, and they performed the "What was where" task, which was modified to evaluated object-location binding memory. We analyzed their ERP and behavior response. RESULTS: Object memory and location memory were preserved during the task, but binding memory decreased significantly when more than four objects were presented. These results indicate that the N1 amplitude is related to the object-only load effect, and the posterior N2 amplitude is a binding-dependent ERP component.


Subject(s)
Evoked Potentials , Memory, Short-Term , Cognition/physiology , Electroencephalography , Evoked Potentials/physiology , Humans , Memory, Short-Term/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...