Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Publication year range
1.
Cancer Sci ; 114(8): 3162-3175, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37198999

ABSTRACT

CD8+ T lymphocyte-mediated immunity strategies have represented attractive weapons against breast cancer (BC) recently. However, the mechanisms underlying CD8+ T-lymphocyte infiltration still remain obscure. Here, using bioinformatics analysis, we identified four hub prognostic genes related to CD8+ T-lymphocyte infiltration (CHMP4A, CXCL9, GRHL2, and RPS29), among which CHMP4A was the most significant gene. High CHMP4A mRNA expression was significantly associated with longer overall survival (OS) in BC patients. Functional experiments showed that CHMP4A had the ability to promote CD8+ T-lymphocyte recruitment and infiltration and suppressed BC growth in vitro and in vivo. Mechanistically, CHMP4A stimulates CD8+ T-lymphocyte infiltration by downregulating LSD1 expression, leading to HERV dsRNA accumulation, and promoting IFNß and its downstream chemokine production. Collectively, CHMP4A is not only a novel positive predictor for prognosis in BC but also a stimulator of CD8+ T-lymphocyte infiltration regulated by the LSD1/IFNß pathway. This study suggests that CHMP4A may be a novel target for improving the effectiveness of immunotherapy in patients with BC.


Subject(s)
Breast Neoplasms , Mammary Neoplasms, Animal , Animals , Humans , Female , CD8-Positive T-Lymphocytes , Breast Neoplasms/metabolism , Prognosis , Mammary Neoplasms, Animal/metabolism , Histone Demethylases/genetics , Histone Demethylases/metabolism , Endosomal Sorting Complexes Required for Transport/metabolism
2.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 38(11): 986-991, 2022 Nov.
Article in Chinese | MEDLINE | ID: mdl-36328428

ABSTRACT

Objective To establish the eukaryotic expression vector of Y-box-binding protein 1 (YB-1) with FLAG-tagged and transfect it into hepatocellular carcinoma HepG2 cells to identify the effects of YB-1 on the proliferation and migration. Methods Human YB-1 gene was amplified from the human ovary library by PCR. YB-1 fraction was double enzyme digested and connected with pcDNA3.0-FLAG vector to construct eukaryotic expression vector pcDNA3.0-FlAG-YB-1, which was transfected into HepG2 cells. The expression of YB-1 was detected by Western blotting, and the effect of YB-1 on the proliferation of HepG2 cells was determined by CCK-8 assay and clone formation. The effect of YB-1 on the migration of HepG2 cells was analyzed by wound healing assays. Results The eukaryotic expression vector pcDNA3.0-FLAG-YB-1 was successfully established. YB-1 protein can be expressed in HepG2 cells, and YB-1 promoted the proliferation and migration of HepG2 cells. Conclusion YB-1 promotes the proliferation and migration of HepG2 cells.


Subject(s)
Eukaryota , Y-Box-Binding Protein 1 , Female , Humans , Y-Box-Binding Protein 1/genetics , Hep G2 Cells , Eukaryotic Cells , Cell Proliferation/genetics
3.
J Antibiot (Tokyo) ; 75(10): 567-575, 2022 10.
Article in English | MEDLINE | ID: mdl-35999263

ABSTRACT

Bacterial infection caused by multidrug-resistant Pseudomonas aeruginosa has become a challenge in clinical practice. Polymyxins are used as the last resort agent for otherwise untreatable Gram-negative bacteria, including multidrug-resistant P.aeruginosa. However, pharmacodynamic (PD) and pharmacokinetic (PK) data on polymyxins suggest that polymyxin monotherapy is unlikely to generate reliably efficacious plasma concentrations. Also, polymyxin resistance has been frequently reported, especially among multidrug-resistant P.aeruginosa, which further limits its clinical use. A strategy for improving the antibacterial activity of polymyxins and preventing the development of polymyxin resistance is to use polymyxins in combination with other agents. In this study, we have demonstrated that resveratrol, a well tolerated compound, has synergistic effects when tested in vitro with polymyxin B on antibacterial and anti-biofilm activities. However, its' systemic use is limited as the required high plasma levels of resveratrol are not achievable. This suggests that it could be a partner for the combination therapy of polymyxin B in the treatment of topical bacterial infection caused by MDR P.aeruginosa.


Subject(s)
Bacterial Infections , Polymyxin B , Anti-Bacterial Agents/therapeutic use , Bacterial Infections/drug therapy , Biofilms , Drug Resistance, Multiple, Bacterial , Humans , Microbial Sensitivity Tests , Polymyxin B/pharmacology , Polymyxins/pharmacology , Pseudomonas aeruginosa , Resveratrol/pharmacology
4.
Int J Biol Sci ; 18(10): 4233-4244, 2022.
Article in English | MEDLINE | ID: mdl-35844785

ABSTRACT

High frequent metastasis is the major cause of breast cancer (BC) mortality among women. However, the molecular mechanisms underlying BC metastasis remain largely unknown. Here, we identified six hub BC metastasis driver genes (BEND5, HSD11B1, NEDD9, SAA2, SH2D2A and TNFSF4) through bioinformatics analysis, among which BEND5 is the most significant gene. Low BEND5 expression predicted advanced stage and shorter overall survival in BC patients. Functional experiments showed that BEND5 could suppress BC growth and metastasis in vitro and in vivo. Mechanistically, BEND5 inhibits Notch signaling via directly interacting with transcription factor RBPJ/CSL. BEN domain of BEND5 interacts with the N-terminal domain (NTD) domain of RBPJ, thus preventing mastermind like transcriptional coactivator (MAML) from forming a transcription activation complex with RBPJ. Our study provides a novel insight into regulatory mechanisms underlying Notch signaling and suggests that BEND5 may become a promising target for BC therapy.


Subject(s)
Breast Neoplasms , Receptors, Notch , Adaptor Proteins, Signal Transducing/genetics , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Female , Gene Expression Regulation, Neoplastic , Genes, Tumor Suppressor , Humans , Immunoglobulin J Recombination Signal Sequence-Binding Protein/genetics , Immunoglobulin J Recombination Signal Sequence-Binding Protein/metabolism , OX40 Ligand/genetics , OX40 Ligand/metabolism , Receptors, Notch/genetics , Receptors, Notch/metabolism , Signal Transduction , Transcription Factors/genetics , Transcription Factors/metabolism
5.
Biochem Biophys Res Commun ; 599: 120-126, 2022 04 09.
Article in English | MEDLINE | ID: mdl-35180471

ABSTRACT

Paclitaxol is a first-line treatment for triple-negative breast cancer (TNBC). The molecular mechanisms underlying paclitaxol resistance in TNBC remain largely unclear. In this study, differential expressed genes (DEGs) between TNBC cells and paclitaxol-resistant (taxol-R) TNBC cells were screened by bioinformatics analysis. Among these DEGs, USP18 mRNA expression was significantly increased in taxol-R TNBC cells. USP18 overexpression reduced paclitaxol sensitivity by decreasing paclitaxol-induced apoptosis and cell cycle arrest in TNBC cells. In contrast, USP18 knockdown increased paclitaxol mediated anticancer activity in taxol-R TNBC cells in vitro and in vivo. Mechanistically, USP18 induced autophagy, an important pathway in chemotherapy resistance. The autophagy inhibitor leupeptin could effectively reverse the effect of USP18 on paclitaxol resistance phenotype. These findings suggested that USP18 may be a promising target for overcoming paclitaxol resistance in TNBC.


Subject(s)
Autophagy/drug effects , Paclitaxel/pharmacology , Triple Negative Breast Neoplasms/drug therapy , Ubiquitin Thiolesterase/genetics , Animals , Antineoplastic Agents, Phytogenic/pharmacology , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Cycle/genetics , Cell Line, Tumor , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Mice, Inbred BALB C , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Ubiquitin Thiolesterase/metabolism , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...