Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Microbiol ; 48(2): 545-53, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19955278

ABSTRACT

Fusobacterium nucleatum is classified into five subspecies that inhabit the human oral cavity (F. nucleatum subsp. nucleatum, F. nucleatum subsp. polymorphum, F. nucleatum subsp. fusiforme, F. nucleatum subsp. vincentii, and F. nucleatum subsp. animalis) based on several phenotypic characteristics and DNA-DNA hybridization patterns. However, the methods for detecting or discriminating the clinical isolates of F. nucleatum at the subspecies levels are laborious, expensive, and time-consuming. Therefore, in this study, the nucleotide sequences of the RNA polymerase beta-subunit gene (rpoB) and zinc protease gene were analyzed to discriminate the subspecies of F. nucleatum. The partial sequences of rpoB (approximately 2,419 bp), the zinc protease gene (878 bp), and 16S rRNA genes (approximately 1,500 bp) of the type strains of five subspecies, 28 clinical isolates of F. nucleatum, and 10 strains of F. periodonticum (as a control group) were determined and analyzed. The phylogenetic data showed that the rpoB and zinc protease gene sequences clearly delineated the subspecies of F. nucleatum and provided higher resolution than the 16S rRNA gene sequences in this respect. According to the phylogenetic analysis of rpoB and the zinc protease gene, F. nucleatum subsp. vincentii and F. nucleatum subsp. fusiforme might be classified into a single subspecies. Five clinical isolates could be delineated as a new subspecies of F. nucleatum. The results suggest that rpoB and the zinc protease gene are efficient targets for the discrimination and taxonomic analysis of the subspecies of F. nucleatum.


Subject(s)
Bacterial Proteins/genetics , Bacterial Typing Techniques , DNA-Directed RNA Polymerases/genetics , Fusobacterium nucleatum/classification , Fusobacterium nucleatum/genetics , Metalloendopeptidases/genetics , Cluster Analysis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Fusobacterium Infections/microbiology , Genotype , Humans , Molecular Sequence Data , Phylogeny , Polymorphism, Genetic , RNA, Ribosomal, 16S/chemistry , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
2.
J Microbiol ; 43(4): 331-6, 2005 Aug.
Article in English | MEDLINE | ID: mdl-16145547

ABSTRACT

The objective of this study was to assess the strain-specificity of a DNA probe, Fu12, for Fusobacterium nucleatum subsp. nucleatum ATCC 25586T (F. nucleatum ATCC 25586T), and to develop sets of strain-specific polymerase chain reaction (PCR) primers. Strain-specificity was tested against 16 strains of F. nucleatum and 3 strains of distinct Fusobacterium species. Southern blot hybridization revealed that the Fu12 reacted exclusively with the HindIII-digested genomic DNA of F. nucleatum ATCC 25586T. The results of PCR revealed that three pairs of PCR primers, based on the nucleotide sequence of Fu12, generated the strain-specific amplicons from F. nucleatum ATCC 25586T. These results suggest that the DNA probe Fu12 and the three pairs of PCR primers could be useful in the identification of F. nucleatum ATCC 25586T, especially with regard to the determination of the authenticity of the strain.


Subject(s)
DNA Probes/genetics , Fusobacterium nucleatum/genetics , Polymerase Chain Reaction/methods , Blotting, Southern , DNA Probes/chemistry , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Bacterial/isolation & purification , Fusobacterium Infections/microbiology , Fusobacterium nucleatum/isolation & purification , Humans , Luminescent Measurements , Periodontitis/microbiology , Sensitivity and Specificity , Sequence Analysis, DNA , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...