Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Pharmaceuticals (Basel) ; 16(12)2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38139829

ABSTRACT

BACKGROUND: Ubiquitin-specific protease 11 (USP11), one of the principal phosphatase and tensin homolog (PTEN) deubiquitinases, can reserve PTEN polyubiquitination to maintain PTEN protein integrity and inhibit PI3K/AKT pathway activation. The aim of the current study was to investigate the associations between immunohistochemical USP11 staining intensities and prognostic indicators in individuals with prostate cancer. METHODS: Tissue microarrays (TMAs) were performed for human prostate cancer and normal tissue (control) samples. Data on patient's age, Gleason score, plasma prostate-specific antigen (PSA) titer, disease stage, and presence of seminal vesicles, lymph nodes, and surgical margin involvement were collected. A pathologist who was blinded to the clinical outcome data scored the TMA for USP11 staining intensity as either positive or negative. RESULTS: Cancerous tissues exhibited lower USP11 staining intensity, whereas the neighboring benign peri-tumoral tissues showed higher USP11 staining intensity. The degree of USP11 staining intensity was lower in patients with a higher PSA titer, higher Gleason score, or more advanced disease stage. Patients who showed positive USP11 staining were more likely to have more optimal clinical and biochemical recurrence-free survival statistics. CONCLUSIONS: USP11 staining intensity in patients with prostate cancer is negatively associated with several prognostic factors such as an elevated PSA titer and a high Gleason score. It also reflects both biochemical and clinical recurrence-free survival in such patients. Thus, USP11 staining is a valuable prognostic factor in patients with prostate cancer.

2.
J Cancer Res Clin Oncol ; 149(9): 6351-6360, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36752909

ABSTRACT

PURPOSE: Ubiquitin-conjugating enzyme E2 C (UBE2C) is known to show a causal relationship with cancer development and advancement. The role of UBE2C is to control the mitotic spindle checkpoint. Excess UBE2C has been identified in patients with advanced prostate cancer. The objective of the present study was to examine positive connections between the expression of UBE2C and prognostic factors for prostate cancer. METHODS: Prostate cancer patients' clinical data were analysed. Tissue microarrays (TMAs) were also performed for human prostate cancer tissues (n = 335) and adjacent non-neoplastic tissues (n = 22). TMA slides were incubated with antibodies against UBE2C. Cores were scored by a pathologist who was blind to cancer results. RESULTS: Of 335 prostate cancer patients, 200 could be assessed for biochemical recurrence, clinical recurrence, and overall survival. Human prostate cancer tissues showed higher expression of UBE2C than adjacent non-neoplastic tissues. High expression level of UBE2C showed a strong positive relationship with a high prostate-specific antigen (PSA), Gleason's score, and pathological stage of prostate cancer. Patients with a higher UBE2C grade demonstrated greater lymphatic engagement of prostate cancer than those with a lower UBE2C grade. CONCLUSION: The expression of UBE2C has positive correlations with several prognostic factors for prostate cancer. Thus, investigating the expression level of UBE2C staining is a promising tool for predicting prostate cancer prognosis.


Subject(s)
Prostatic Neoplasms , Ubiquitin-Conjugating Enzymes , Male , Humans , Prognosis
3.
Exp Mol Med ; 54(11): 1814-1821, 2022 11.
Article in English | MEDLINE | ID: mdl-36385557

ABSTRACT

PTEN is among the most commonly lost or mutated tumor suppressor genes in human cancer. PTEN, a bona fide lipid phosphatase that antagonizes the highly oncogenic PI3K-AKT-mTOR pathway, is considered a major dose-dependent tumor suppressor. Although PTEN function can be compromised by genetic mutations in inherited syndromes and cancers, posttranslational modifications of PTEN may also play key roles in the dynamic regulation of its function. Notably, deregulated ubiquitination and deubiquitination lead to detrimental impacts on PTEN levels and subcellular partitioning, promoting tumorigenesis. While PTEN can be targeted by HECT-type E3 ubiquitin ligases for nuclear import and proteasomal degradation, studies have shown that several deubiquitinating enzymes, including HAUSP/USP7, USP10, USP11, USP13, OTUD3 and Ataxin-3, can remove ubiquitin from ubiquitinated PTEN in cancer-specific contexts and thus reverse ubiquitination-mediated PTEN regulation. Researchers continue to reveal the precise molecular mechanisms by which cancer-specific deubiquitinases of PTEN regulate its roles in the pathobiology of cancer, and new methods of pharmacologically for modulating PTEN deubiquitinases are critical areas of investigation for cancer treatment and prevention. Here, we assess the mechanisms and functions of deubiquitination as a recently appreciated mode of PTEN regulation and review the link between deubiquitinases and PTEN reactivation and its implications for therapeutic strategies.


Subject(s)
Neoplasms , Phosphatidylinositol 3-Kinases , Humans , Phosphatidylinositol 3-Kinases/metabolism , Ubiquitination , Ubiquitin/metabolism , Carcinogenesis/metabolism , Neoplasms/genetics , Neoplasms/metabolism , Deubiquitinating Enzymes , Thiolester Hydrolases/metabolism , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/metabolism , Ubiquitin-Specific Peptidase 7/metabolism , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism
4.
Cell Metab ; 33(12): 2380-2397.e9, 2021 12 07.
Article in English | MEDLINE | ID: mdl-34879239

ABSTRACT

Accelerated glycolysis is the main metabolic change observed in cancer, but the underlying molecular mechanisms and their role in cancer progression remain poorly understood. Here, we show that the deletion of the long noncoding RNA (lncRNA) Neat1 in MMTV-PyVT mice profoundly impairs tumor initiation, growth, and metastasis, specifically switching off the penultimate step of glycolysis. Mechanistically, NEAT1 directly binds and forms a scaffold bridge for the assembly of PGK1/PGAM1/ENO1 complexes and thereby promotes substrate channeling for high and efficient glycolysis. Notably, NEAT1 is upregulated in cancer patients and correlates with high levels of these complexes, and genetic and pharmacological blockade of penultimate glycolysis ablates NEAT1-dependent tumorigenesis. Finally, we demonstrate that Pinin mediates glucose-stimulated nuclear export of NEAT1, through which it exerts isoform-specific and paraspeckle-independent functions. These findings establish a direct role for NEAT1 in regulating tumor metabolism, provide new insights into the Warburg effect, and identify potential targets for therapy.


Subject(s)
Breast Neoplasms , MicroRNAs , RNA, Long Noncoding , Animals , Breast Neoplasms/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Female , Gene Expression Regulation, Neoplastic , Glycolysis , Humans , Mice , MicroRNAs/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
5.
Pharmaceuticals (Basel) ; 14(8)2021 Aug 08.
Article in English | MEDLINE | ID: mdl-34451875

ABSTRACT

BACKGROUND: The mTOR signaling pathway is inactivated by AMPK's tumor-suppressing function. It is recognized that ubiquitin conjugating enzyme 2O (UBE2O), which directly targets AMPK for ubiquitination and degradation, is intensified in human cancers. METHODS: This study investigated the clinical data about prostate cancer. Examination was also carried out into tissue microarrays (TMA) of human prostate cancer (n = 382) and adjacent non-neoplastic tissues around prostate cancer (n = 61). The TMA slides were incubated with antibodies against UBE2O, and the cores were scored by the pathologist blind to cancer results. RESULTS: Very strong positive correlations were identified between the expression of UBE2O staining and high PSA and pathological stage of prostate cancer. Cox's proportional hazard analysis established correlations between the following: (1) positive surgical margin and biochemical recurrence free survival, (2) PSA grade and clinical recurrence free survival, (3) regional lymph node positive and clinical recurrence free survival, (4) adjuvant treatment and overall survival, and (5) pathological T stage and overall survival. CONCLUSION: There is a positive correlation between the expression of UBE2O staining and prognosis for prostate cancer. Thus, a prostate cancer prognosis can be assessed with the expression of UBE2O staining.

6.
Int J Mol Sci ; 21(5)2020 Mar 03.
Article in English | MEDLINE | ID: mdl-32138313

ABSTRACT

Altered gene expression is the primary molecular mechanism responsible for the pathological processes of human diseases, including cancer. MicroRNAs (miRNAs) are virtually involved at the post-transcriptional level and bind to 3' UTR of their target messenger RNA (mRNA) to suppress expression. Dysfunction of miRNAs disturbs expression of oncogenic or tumor-suppressive target genes, which is implicated in cancer pathogenesis. As such, a large number of miRNAs have been found to be downregulated or upregulated in human cancers and to function as oncomiRs or oncosuppressor miRs. Notably, the molecular mechanism underlying the dysregulation of miRNA expression in cancer has been recently uncovered. The genetic deletion or amplification and epigenetic methylation of miRNA genomic loci and the transcription factor-mediated regulation of primary miRNA often alter the landscape of miRNA expression in cancer. Dysregulation of the multiple processing steps in mature miRNA biogenesis can also cause alterations in miRNA expression in cancer. Detailed knowledge of the regulatory mechanism of miRNAs in cancer is essential for understanding its physiological role and the implications of cancer-associated dysfunction and dysregulation. In this review, we elucidate how miRNA expression is deregulated in cancer, paying particular attention to the cancer-associated transcriptional and post-transcriptional factors that execute miRNA programs.


Subject(s)
MicroRNAs/metabolism , Neoplasms/genetics , Animals , Epigenesis, Genetic/genetics , Epigenesis, Genetic/physiology , Gene Expression Regulation, Neoplastic/genetics , Gene Expression Regulation, Neoplastic/physiology , Humans , MicroRNAs/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism
7.
Nat Commun ; 10(1): 3716, 2019 08 16.
Article in English | MEDLINE | ID: mdl-31420536

ABSTRACT

The Anaphase Promoting Complex (APC) coactivator Cdh1 drives proper cell cycle progression and is implicated in the suppression of tumorigenesis. However, it remains elusive how Cdh1 restrains cancer progression and how tumor cells escape the inhibition of Cdh1. Here we report that Cdh1 suppresses the kinase activity of c-Src in an APC-independent manner. Depleting Cdh1 accelerates breast cancer cell proliferation and cooperates with PTEN loss to promote breast tumor progression in mice. Hyperactive c-Src, on the other hand, reciprocally inhibits the ubiquitin E3 ligase activity of APCCdh1 through direct phosphorylation of Cdh1 at its N-terminus, which disrupts the interaction between Cdh1 and the APC core complex. Furthermore, pharmacological inhibition of c-Src restores APCCdh1 tumor suppressor function to repress a panel of APCCdh1 oncogenic substrates. Our findings reveal a reciprocal feedback circuit of Cdh1 and c-Src in the crosstalk between the cell cycle machinery and the c-Src signaling pathway.


Subject(s)
Anaphase-Promoting Complex-Cyclosome/metabolism , Cdh1 Proteins/metabolism , Proto-Oncogene Proteins pp60(c-src)/metabolism , Animals , Breast Neoplasms , Carcinogenesis , Cdh1 Proteins/genetics , Cell Line, Tumor , Cell Proliferation , Female , Humans , MCF-7 Cells , Mice , Mice, Knockout , Neoplasm Transplantation , PTEN Phosphohydrolase/genetics , Ubiquitin-Protein Ligases/metabolism
8.
JCI Insight ; 4(13)2019 07 11.
Article in English | MEDLINE | ID: mdl-31292296

ABSTRACT

Ubiquitin-conjugating enzyme E2O (UBE2O) is expressed preferentially in metabolic tissues, but its role in regulating energy homeostasis has yet to be defined. Here we find that UBE2O is markedly upregulated in obese subjects with type 2 diabetes and show that whole-body disruption of Ube2o in mouse models in vivo results in improved metabolic profiles and resistance to high-fat diet-induced (HFD-induced) obesity and metabolic syndrome. With no difference in nutrient intake, Ube2o-/- mice were leaner and expended more energy than WT mice. In addition, hyperinsulinemic-euglycemic clamp studies revealed that Ube2o-/- mice were profoundly insulin sensitive. Through phenotype analysis of HFD mice with muscle-, fat-, or liver-specific knockout of Ube2o, we further identified UBE2O as an essential regulator of glucose and lipid metabolism programs in skeletal muscle, but not in adipose or liver tissue. Mechanistically, UBE2O acted as a ubiquitin ligase and targeted AMPKα2 for ubiquitin-dependent degradation in skeletal muscle; further, muscle-specific heterozygous knockout of Prkaa2 ablated UBE2O-controlled metabolic processes. These results identify the UBE2O/AMPKα2 axis as both a potent regulator of metabolic homeostasis in skeletal muscle and a therapeutic target in the treatment of diabetes and metabolic disorders.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Diabetes Mellitus, Type 2/metabolism , Insulin Resistance , Metabolic Syndrome/metabolism , Obesity/metabolism , Ubiquitin-Conjugating Enzymes/metabolism , Animals , Cell Line , Diabetes Mellitus, Type 2/complications , Diet, High-Fat/adverse effects , Disease Models, Animal , Female , Glucose/metabolism , Humans , Insulin/metabolism , Lipid Metabolism , Male , Metabolic Syndrome/etiology , Mice , Mice, Knockout , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Myoblasts, Skeletal , Obesity/etiology , Primary Cell Culture , Proteolysis , Ubiquitin-Conjugating Enzymes/analysis , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitination , Up-Regulation
9.
Nat Commun ; 10(1): 636, 2019 02 07.
Article in English | MEDLINE | ID: mdl-30733438

ABSTRACT

PTEN is a lipid phosphatase that antagonizes the PI3K/AKT pathway and is recognized as a major dose-dependent tumor suppressor. The cellular mechanisms that control PTEN levels therefore offer potential routes to therapy, but these are as yet poorly defined. Here we demonstrate that PTEN plays an unexpected role in regulating its own stability through the transcriptional upregulation of the deubiquitinase USP11 by the PI3K/FOXO pathway, and further show that this feedforward mechanism is implicated in its tumor-suppressive role, as mice lacking Usp11 display increased susceptibility to PTEN-dependent tumor initiation, growth and metastasis. Notably, USP11 is downregulated in cancer patients, and correlates with PTEN expression and FOXO nuclear localization. Our findings therefore demonstrate that PTEN-PI3K-FOXO-USP11 constitute the regulatory feedforward loop that improves the stability and tumor suppressive activity of PTEN.


Subject(s)
Forkhead Transcription Factors/metabolism , PTEN Phosphohydrolase/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Thiolester Hydrolases/metabolism , Animals , Cells, Cultured , Forkhead Transcription Factors/genetics , Gene Expression Regulation, Neoplastic/genetics , Gene Expression Regulation, Neoplastic/physiology , Magnetic Resonance Imaging , Male , Mice , Mice, Knockout , Mice, Nude , PTEN Phosphohydrolase/genetics , Phosphatidylinositol 3-Kinases/genetics , Signal Transduction/genetics , Signal Transduction/physiology , Thiolester Hydrolases/genetics
10.
Mol Cells ; 41(3): 168-178, 2018 Mar 31.
Article in English | MEDLINE | ID: mdl-29562734

ABSTRACT

Intracellular communication via ubiquitin (Ub) signaling impacts all aspects of cell biology and regulates pathways critical to human development and viability; therefore aberrations or defects in Ub signaling can contribute to the pathogenesis of human diseases. Ubiquitination consists of the addition of Ub to a substrate protein via coordinated action of E1-activating, E2-conjugating and E3-ligating enzymes. Approximately 40 E2s have been identified in humans, and most are thought to be involved in Ub transfer; although little information is available regarding the majority of them, emerging evidence has highlighted their importance to human health and disease. In this review, we focus on recent insights into the pathogenetic roles of E2s (particularly the ubiquitin-conjugating enzyme E2O [UBE2O]) in debilitating diseases and cancer, and discuss the tantalizing prospect that E2s may someday serve as potential therapeutic targets for human diseases.


Subject(s)
Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin/metabolism , Ubiquitination/genetics , Humans
11.
Biochem Biophys Res Commun ; 496(3): 826-833, 2018 02 12.
Article in English | MEDLINE | ID: mdl-29378184

ABSTRACT

Breast cancer is the most frequently diagnosed life-threatening cancer in women. Triple-negative breast cancer (TNBC) has an aggressive clinical behavior, but the treatment of TNBC remains challenging. MicroRNAs (miRNAs) have emerged as a potential target for the diagnosis, therapy and prognosis of breast cancer. However, the precise role of miRNAs and their targets in breast cancer remain to be elucidated. Here we show that miR-218 is downregulated and miR-129 is upregulated in TNBC samples and their expressions confer prognosis to patients. Gain-of-function and loss-of-function analysis reveals that miR-218 has a tumor suppressive activity, while miR-129 acts as an oncomir in breast cancer. Notably, miR-218 and miR-129 directly target Lamin B1 and Lamin A, respectively, which are also found to be deregulated in human breast tumors. Finally, we demonstrate Lamins as the major factors in reliable miR-218 and miR-129 functions for breast cancer progression. Our findings uncover a new miRNA-mediated regulatory network for different Lamins and provide a potential therapeutic target for breast cancer.


Subject(s)
Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Gene Expression Regulation, Neoplastic , Lamins/metabolism , MicroRNAs/metabolism , Cell Proliferation , Humans , MCF-7 Cells , Neoplasm Invasiveness/pathology
12.
Mol Cell Oncol ; 4(3): e1304846, 2017.
Article in English | MEDLINE | ID: mdl-28616582

ABSTRACT

Ubiquitin-conjugating enzyme E2O (UBE2O) is upregulated in human cancers. We have demonstrated that genetic deletion or pharmacological blockade of UBE2O reduces tumorigenesis through inhibiting the mammalian target of rapamycin complex 1-hypoxia-inducible factor 1-α pathway. Critically, UBE2O targets adenosine monophosphate (AMP)-activated protein kinase-α 2 (AMPKα2) for ubiquitination and degradation. We thus suggest the UBE2O-AMPKα2 axis as a potential therapeutic target for cancer.

13.
Cancer Cell ; 31(2): 208-224, 2017 02 13.
Article in English | MEDLINE | ID: mdl-28162974

ABSTRACT

UBE2O is localized in the 17q25 locus, which is known to be amplified in human cancers, but its role in tumorigenesis remains undefined. Here we show that Ube2o deletion in MMTV-PyVT or TRAMP mice profoundly impairs tumor initiation, growth, and metastasis, while switching off the metabolic reprogramming of tumor cells. Mechanistically, UBE2O specifically targets AMPKα2 for ubiquitination and degradation, and thereby promotes activation of the mTOR-HIF1α pathway. Notably, inactivation of AMPKα2, but not AMPKα1, abrogates the tumor attenuation caused by UBE2O loss, while treatment with rapamycin or inhibition of HIF1α ablates UBE2O-dependent tumor biology. Finally, pharmacological blockade of UBE2O inhibits tumorigenesis through the restoration of AMPKα2, suggesting the UBE2O-AMPKα2 axis as a potential cancer therapeutic target.


Subject(s)
AMP-Activated Protein Kinases/physiology , Neoplasms/etiology , Ubiquitin-Conjugating Enzymes/physiology , AMP-Activated Protein Kinases/antagonists & inhibitors , Animals , Antigens, Neoplasm/metabolism , Disease Progression , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/physiology , Mice , Mice, Inbred C57BL , Neoplasm Proteins/metabolism , Neoplasms/drug therapy , TOR Serine-Threonine Kinases/physiology , Ubiquitin-Conjugating Enzymes/antagonists & inhibitors , Ubiquitination
14.
Cancer Discov ; 7(4): 424-441, 2017 04.
Article in English | MEDLINE | ID: mdl-28174173

ABSTRACT

BRAF drives tumorigenesis by coordinating the activation of the RAS/RAF/MEK/ERK oncogenic signaling cascade. However, upstream pathways governing BRAF kinase activity and protein stability remain undefined. Here, we report that in primary cells with active APCFZR1, APCFZR1 earmarks BRAF for ubiquitination-mediated proteolysis, whereas in cancer cells with APC-free FZR1, FZR1 suppresses BRAF through disrupting BRAF dimerization. Moreover, we identified FZR1 as a direct target of ERK and CYCLIN D1/CDK4 kinases. Phosphorylation of FZR1 inhibits APCFZR1, leading to elevation of a cohort of oncogenic APCFZR1 substrates to facilitate melanomagenesis. Importantly, CDK4 and/or BRAF/MEK inhibitors restore APCFZR1 E3 ligase activity, which might be critical for their clinical effects. Furthermore, FZR1 depletion cooperates with AKT hyperactivation to transform primary melanocytes, whereas genetic ablation of Fzr1 synergizes with Pten loss, leading to aberrant coactivation of BRAF/ERK and AKT signaling in mice. Our findings therefore reveal a reciprocal suppression mechanism between FZR1 and BRAF in controlling tumorigenesis.Significance: FZR1 inhibits BRAF oncogenic functions via both APC-dependent proteolysis and APC-independent disruption of BRAF dimers, whereas hyperactivated ERK and CDK4 reciprocally suppress APCFZR1 E3 ligase activity. Aberrancies in this newly defined signaling network might account for BRAF hyperactivation in human cancers, suggesting that targeting CYCLIN D1/CDK4, alone or in combination with BRAF/MEK inhibition, can be an effective anti-melanoma therapy. Cancer Discov; 7(4); 424-41. ©2017 AACR.See related commentary by Zhang and Bollag, p. 356This article is highlighted in the In This Issue feature, p. 339.


Subject(s)
Adenomatous Polyposis Coli Protein/genetics , Cdh1 Proteins/genetics , Melanoma/genetics , Proto-Oncogene Proteins B-raf/genetics , Adenomatous Polyposis Coli Protein/metabolism , Animals , Carcinogenesis/genetics , Cdh1 Proteins/metabolism , Cell Line, Tumor , Cyclin D1/genetics , Dimerization , HeLa Cells , Humans , Melanocytes/metabolism , Melanocytes/pathology , Melanoma/drug therapy , Melanoma/pathology , Mice , Multiprotein Complexes/genetics , Phosphorylation/genetics , Protein Kinase Inhibitors/administration & dosage , Proto-Oncogene Proteins B-raf/metabolism , Signal Transduction/drug effects , Ubiquitin-Protein Ligases/genetics , Xenograft Model Antitumor Assays
15.
Front Oncol ; 7: 331, 2017.
Article in English | MEDLINE | ID: mdl-29441324

ABSTRACT

Myeloid malignancies, including myelodysplastic syndromes and acute myeloid leukemia, are clonal diseases arising in hematopoietic stem or progenitor cells. In recent years, microRNA (miRNA) expression profiling studies have revealed close associations of miRNAs with cytogenetic and molecular subtypes of myeloid malignancies, as well as outcome and prognosis of patients. However, the roles of miRNA deregulation in the pathogenesis of myeloid malignancies and how they cooperate with protein-coding gene variants in pathological mechanisms leading to the diseases have not yet been fully understood. In this review, we focus on recent insights into the role of miRNAs in the development and progression of myeloid malignant diseases and discuss the prospect that miRNAs may serve as a potential therapeutic target for leukemia.

16.
Exp Hematol ; 44(5): 322-8, 2016 May.
Article in English | MEDLINE | ID: mdl-26930362

ABSTRACT

Tetraspanins (tetraspans or TM4SF) are a family of integral membrane proteins with four transmembrane helices, a small extracellular loop, and a large extracellular loop. Although tetraspanins are expressed in many types of cells, including immune cells, their biological roles are not fully defined. Nonetheless, recent studies have revealed the important roles of tetraspanins in solid tumors and hematologic malignancies, and expression of tetraspanins is associated with the malignancy of human tumors. Furthermore, genetic mouse models of tetraspanins highlight their contribution to tumorigenesis. In this review, we summarize the implication of tetraspanins in cancer with a special focus on tetraspanin 3 in myeloid leukemia. Our increasing knowledge of tetraspanins and the pathologies that alter their function will undoubtedly inform the rational design of novel cancer therapies.


Subject(s)
Hematologic Neoplasms/metabolism , Membrane Proteins/metabolism , Neoplasms/metabolism , Tetraspanins/metabolism , Acute Disease , Animals , Hematologic Neoplasms/pathology , Humans , Leukemia, Myeloid/metabolism , Leukemia, Myeloid/pathology , Models, Biological , Neoplasms/pathology
17.
Cancer Discov ; 4(8): 896-904, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24866151

ABSTRACT

UNLABELLED: Prostate cancer is the most prevalent cancer in males, and treatment options are limited for advanced forms of the disease. Loss of the PTEN and TP53 tumor suppressor genes is commonly observed in prostate cancer, whereas their compound loss is often observed in advanced prostate cancer. Here, we show that PARP inhibition triggers a p53-dependent cellular senescence in a PTEN-deficient setting in the prostate. Surprisingly, we also find that PARP-induced cellular senescence is morphed into an apoptotic response upon compound loss of PTEN and p53. We further show that superactivation of the prosurvival PI3K-AKT signaling pathway limits the efficacy of a PARP single-agent treatment, and that PARP and PI3K inhibitors effectively synergize to suppress tumorigenesis in human prostate cancer cell lines and in a Pten/Trp53-deficient mouse model of advanced prostate cancer. Our findings, therefore, identify a combinatorial treatment with PARP and PI3K inhibitors as an effective option for PTEN-deficient prostate cancer. SIGNIFICANCE: The paucity of therapeutic options in advanced prostate cancer displays an urgent need for the preclinical assessment of novel therapeutic strategies. We identified differential therapeutic vulnerabilities that emerge upon the loss of both PTEN and p53, and observed that combined inhibition of PARP and PI3K provides increased efficacy in hormone-insensitive advanced prostate cancer.


Subject(s)
Elafin/genetics , PTEN Phosphohydrolase/genetics , Poly(ADP-ribose) Polymerases/genetics , Prostatic Neoplasms/drug therapy , Tumor Suppressor Protein p53/genetics , Animals , Apoptosis/drug effects , Cell Line, Tumor , Cellular Senescence/drug effects , Elafin/antagonists & inhibitors , Humans , Male , Mice , Molecular Targeted Therapy , Poly(ADP-ribose) Polymerase Inhibitors , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology
18.
Curr Opin Hematol ; 21(4): 276-82, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24870972

ABSTRACT

PURPOSE OF REVIEW: This review highlights recent insights into the roles of microRNAs (miRNAs) in pathogenesis of myeloid malignancies and tantalising prospects of miRNA therapy. RECENT FINDINGS: New roles for miRNAs in biological and disease processes are constantly being discovered. Although great effort has been put into identifying and cataloguing aberrantly expressed miRNAs in leukaemia, very little is known about the functional consequences of their deregulation in myeloid malignancies. This review will discuss the significance of powerful oncogenic miRNAs such as miR-22 in self-renewal and transformation of haematopoietic stem cells, as well as their ability to induce epigenetic alterations in the pathogenesis of the stem cell disorder myelodysplastic syndromes and myeloid leukaemia. SUMMARY: Improved understanding of biological roles of miRNAs in the pathogenesis of haematological malignancies will allow rational stratification of patients and provide new therapeutic entries for the treatment of myelodysplastic syndromes and leukaemia.


Subject(s)
Cell Transformation, Neoplastic/genetics , Leukemia, Myeloid/genetics , MicroRNAs/genetics , Myelodysplastic Syndromes/genetics , Animals , Humans , Leukemia, Myeloid/therapy , Molecular Targeted Therapy , Myelodysplastic Syndromes/therapy
20.
Cell ; 154(2): 311-324, 2013 Jul 18.
Article in English | MEDLINE | ID: mdl-23830207

ABSTRACT

Tumor cells metastasize to distant organs through genetic and epigenetic alterations, including changes in microRNA (miR) expression. Here we find miR-22 triggers epithelial-mesenchymal transition (EMT), enhances invasiveness and promotes metastasis in mouse xenografts. In a conditional mammary gland-specific transgenic (TG) mouse model, we show that miR-22 enhances mammary gland side-branching, expands the stem cell compartment, and promotes tumor development. Critically, miR-22 promotes aggressive metastatic disease in MMTV-miR-22 TG mice, as well as compound MMTV-neu or -PyVT-miR-22 TG mice. We demonstrate that miR-22 exerts its metastatic potential by silencing antimetastatic miR-200 through direct targeting of the TET (Ten eleven translocation) family of methylcytosine dioxygenases, thereby inhibiting demethylation of the mir-200 promoter. Finally, we show that miR-22 overexpression correlates with poor clinical outcomes and silencing of the TET-miR-200 axis in patients. Taken together, our findings implicate miR-22 as a crucial epigenetic modifier and promoter of EMT and breast cancer stemness toward metastasis.


Subject(s)
Breast Neoplasms/pathology , Chromatin Assembly and Disassembly , Epithelial-Mesenchymal Transition , Gene Expression Regulation, Neoplastic , MicroRNAs/metabolism , Neoplasm Metastasis , Neoplastic Stem Cells/metabolism , 5-Methylcytosine/analogs & derivatives , Animals , Breast Neoplasms/metabolism , Cytosine/analogs & derivatives , Cytosine/metabolism , Humans , Mice , Mice, Transgenic , Neoplasm Transplantation , Proto-Oncogene Proteins/metabolism , RNA Interference , Transplantation, Heterologous
SELECTION OF CITATIONS
SEARCH DETAIL
...