Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 5085, 2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37607969

ABSTRACT

Soliton molecules, bound states of two solitons, can be important for the informatics using solitons and the quest for exotic particles in a wide range of physical systems from unconventional superconductors to nuclear matter and Higgs field, but have been observed only in temporal dimension for classical wave optical systems. Here, we identify a topological soliton molecule formed spatially in an electronic system, a quasi 1D charge density wave of indium atomic wires. This system is composed of two coupled Peierls chains, which are endowed with a Z4 topology and three distinct, right-chiral, left-chiral, and non-chiral, solitons. Our scanning tunneling microscopy measurements identify a bound state of right- and left-chiral solitons with distinct in-gap states and net zero phase shift. Our density functional theory calculations reveal the attractive interaction of these solitons and the hybridization of their electronic states. This result initiates the study of the interaction between solitons in electronic systems, which can provide novel manybody electronic states and extra data-handling capacity beyond the given soliton topology.

2.
Nat Nanotechnol ; 17(3): 244-249, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34934195

ABSTRACT

Localized modes in one-dimensional (1D) topological systems, such as Majonara modes in topological superconductors, are promising candidates for robust information processing. While theory predicts mobile integer and fractional topological solitons in 1D topological insulators, experiments so far have unveiled immobile, integer solitons only. Here we observe fractionalized phase defects moving along trimer silicon atomic chains formed along step edges of a vicinal silicon surface. By means of tunnelling microscopy, we identify local defects with phase shifts of 2π/3 and 4π/3 with their electronic states within the band gap and with their motions activated above 100 K. Theoretical calculations reveal the topological soliton origin of the phase defects with fractional charges of ±2e/3 and ±4e/3. Additionally, we create and annihilate individual solitons at desired locations by current pulses from the probe tip. Mobile and manipulable topological solitons may serve as robust, topologically protected information carriers in future information technology.

3.
Nano Lett ; 20(9): 6299-6305, 2020 Sep 09.
Article in English | MEDLINE | ID: mdl-32787162

ABSTRACT

We investigate electronic states of Se-substituted 1T-TaS2 by scanning tunneling microscopy/spectroscopy (STM/STS), where superconductivity emerges from the unique Mott-charge-density-wave (Mott-CDW) state. Spatially resolved STS measurements reveal that a pseudogap replaces the Mott gap with the CDW gaps intact. The pseudogap has little correlation with the unit-cell-to-unit-cell variation in the local Se concentration but appears globally. The correlation length of the local density of states (LDOS) is substantially enhanced at the Fermi energy and decays rapidly at high energies. Furthermore, the statistical analysis of LDOS indicates the weak multifractal behavior of the wave functions. These findings suggest a correlated metallic state induced by disorder and provide a new insight into the emerging superconductivity in two-dimensional materials.

4.
Nano Lett ; 19(8): 5769-5773, 2019 Aug 14.
Article in English | MEDLINE | ID: mdl-31276408

ABSTRACT

We investigated the atomic scale electronic phase separation emerging from a quasi-1D charge-density-wave (CDW) state of the In atomic wire array on a Si(111) surface. Spatial variations of the CDW gap and amplitude are quantified for various interfaces of metallic and insulating CDW domains by scanning tunneling microscopy and spectroscopy (STS). The strong anisotropy in the metal-insulator junctions is revealed with an order of magnitude difference in the interwire and intrawire junction lengths of 0.4 and 7 nm, respectively. The intrawire junction length is reduced dramatically by an atomic scale impurity, indicating the tunability of the metal-insulator junction in an atomic scale. Density functional theory calculations disclose the dynamical nature of the intrawire junction formation and tunability.

5.
Sci Rep ; 9(1): 1364, 2019 Feb 04.
Article in English | MEDLINE | ID: mdl-30718763

ABSTRACT

Self-assembled rare-earth (RE) silicide nanowires (NWs) on semiconductor surfaces are considered as good candidates for creating and investigating one-dimensional electron systems because of their exceptionally anisotropic growth behavior and metallic property. While detailed atomic structures are essential to understand electronic properties of these NWs, there have been only few successful observations of atomic structures with microscopy and reliable structure models are lacking. Here, we reinvestigate gadolinium silicide NWs with high resolution scanning tunneling microscopy (STM). We observe several different structures of Gd silicide NWs depending systematically on their widths, which consist of two distinct structural elements along the wires. The structure of a wide wire can be understood from that of a two dimensional silicide. Based on these STM observations, we propose new structure models of Gd silicide NWs.

SELECTION OF CITATIONS
SEARCH DETAIL
...