Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Arch Med Sci ; 17(5): 1200-1212, 2021.
Article in English | MEDLINE | ID: mdl-34522249

ABSTRACT

As obesity becomes more common worldwide, the prevalence of obstructive sleep apnoea (OSA) continues to rise. Obstructive sleep apnoea is a well-known disorder that causes chronic intermittent hypoxia (CIH), which is considered a risk factor for atherosclerosis directly and indirectly. Ischaemic heart disease remains the leading cause of death. Most risk factors for atherosclerosis are well understood. However, other factors such as CIH are less well understood. Several studies have investigated the pathophysiology of CIH, attempting to uncover its link to atherosclerosis and to determine whether OSA treatment can be a therapeutic modality to modify the risk for atherosclerosis. In this article, we will review the pathophysiology of OSA as an independent risk factor for cardiovascular disease and discuss the most common markers that have been studied. We will also examine the potential impact of OSA management as a risk factor modifier on the reversibility of atherosclerosis.

2.
PLoS One ; 15(9): e0238946, 2020.
Article in English | MEDLINE | ID: mdl-32956397

ABSTRACT

BACKGROUND: The origin of low frequency cerebral hemodynamic fluctuations (CHF) in the resting state remains unknown. Breath-by breath O2-CO2 exchange ratio (bER) has been reported to correlate with the cerebrovascular response to brief breath hold challenge at the frequency range of 0.008-0.03Hz in healthy adults. bER is defined as the ratio of the change in the partial pressure of oxygen (ΔPO2) to that of carbon dioxide (ΔPCO2) between end inspiration and end expiration. In this study, we aimed to investigate the contribution of respiratory gas exchange (RGE) metrics (bER, ΔPO2 and ΔPCO2) to low frequency CHF during spontaneous breathing. METHODS: Twenty-two healthy adults were included. We used transcranial Doppler sonography to evaluate CHF by measuring the changes in cerebral blood flow velocity (ΔCBFv) in bilateral middle cerebral arteries. The regional CHF were mapped with blood oxygenation level dependent (ΔBOLD) signal changes using functional magnetic resonance imaging. Temporal features and frequency characteristics of RGE metrics during spontaneous breathing were examined, and the simultaneous measurements of RGE metrics and CHF (ΔCBFv and ΔBOLD) were studied for their correlation. RESULTS: We found that the time courses of ΔPO2 and ΔPCO2 were interdependent but not redundant. The oscillations of RGE metrics were coherent with resting state CHF at the frequency range of 0.008-0.03Hz. Both bER and ΔPO2 were superior to ΔPCO2 in association with CHF while CHF could correlate more strongly with bER than with ΔPO2 in some brain regions. Brain regions with the strongest coupling between bER and ΔBOLD overlapped with many areas of default mode network including precuneus and posterior cingulate. CONCLUSION: Although the physiological mechanisms underlying the strong correlation between bER and CHF are unclear, our findings suggest the contribution of bER to low frequency resting state CHF, providing a novel insight of brain-body interaction via CHF and oscillations of RGE metrics.


Subject(s)
Cerebrovascular Circulation/physiology , Respiratory Rate/physiology , Adult , Blood Flow Velocity/physiology , Brain/physiology , Carbon Dioxide/blood , Female , Healthy Volunteers , Hemodynamics/physiology , Humans , Magnetic Resonance Imaging/methods , Male , Middle Cerebral Artery/physiology , Oxygen/blood , Partial Pressure , Respiration , Rest/physiology , Ultrasonography, Doppler, Transcranial/methods , Vasodilation/physiology
3.
PLoS One ; 15(3): e0225915, 2020.
Article in English | MEDLINE | ID: mdl-32208415

ABSTRACT

BACKGROUND: Hypercapnia during breath holding is believed to be the dominant driver behind the modulation of cerebral blood flow (CBF). However, increasing evidence show that mild hypoxia and mild hypercapnia in breath hold (BH) could work synergistically to enhance CBF response. We hypothesized that breath-by-breath O2-CO2 exchange ratio (bER), defined as the ratio of the change in partial pressure of oxygen (ΔPO2) to that of carbon dioxide (ΔPCO2) between end inspiration and end expiration, would be able to better correlate with the global and regional cerebral hemodynamic responses (CHR) to BH challenge. We aimed to investigate whether bER is a more useful index than end-tidal PCO2 to characterize cerebrovascular reactivity (CVR) under BH challenge. METHODS: We used transcranial Doppler ultrasound (TCD) to evaluate CHR under BH challenge by measuring cerebral blood flow velocity (CBFv) in the middle cerebral arteries. Regional changes in CHR to BH and exogenous CO2 challenges were mapped with blood oxygenation level dependent (BOLD) signal changes using functional magnetic resonance imaging (fMRI). We correlated respiratory gas exchange (RGE) metrics (bER, ΔPO2, ΔPCO2, end-tidal PCO2 and PO2, and time of breaths) with CHR (CBFv and BOLD) to BH challenge. Temporal features and frequency characteristics of RGE metrics and their coherence with CHR were examined. RESULTS: CHR to brief BH epochs and free breathing were coupled with both ΔPO2 and ΔPCO2. We found that bER was superior to either ΔPO2 or ΔPCO2 alone in coupling with the changes of CBFv and BOLD signals under breath hold challenge. The regional CVR results derived by regressing BOLD signal changes on bER under BH challenge resembled those derived by regressing BOLD signal changes on end-tidal PCO2 under exogenous CO2 challenge. CONCLUSION: Our findings provide a novel insight on the potential of using bER to better quantify CVR changes under BH challenge.


Subject(s)
Brain , Breath Holding , Carbon Dioxide/blood , Cerebrovascular Circulation , Hypercapnia , Magnetic Resonance Imaging , Oxygen/blood , Ultrasonography, Doppler, Transcranial , Adult , Brain/blood supply , Brain/diagnostic imaging , Brain/metabolism , Female , Humans , Hypercapnia/blood , Hypercapnia/diagnostic imaging , Male , Middle Aged , Partial Pressure
4.
Ann Transl Med ; 7(15): 363, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31516909

ABSTRACT

Lobar atelectasis is a common complication in lung cancer. It can be caused by direct endobronchial tumorous seeding or indirectly by mucus plugs due to bacterial lung infections. Treatment is usually conservative, with or without therapeutic bronchoscopy. Dornase alfa is a recombinant human deoxyribonuclease I (rhDNase), an enzyme that selectively cleaves DNA, thus reducing mucous viscosity. rhDNase has been used as a mucolytic agent in cystic fibrosis (CF) patients. Though bronchoscopically instilled rhDNase has been reported as a treatment for persistent lobar atelectasis in newborn and pediatric populations, its use in adults has not been well established.

5.
Brain Inj ; 29(3): 403-7, 2015.
Article in English | MEDLINE | ID: mdl-25384127

ABSTRACT

PRIMARY OBJECTIVE: To use breath-hold functional magnetic resonance imaging (fMRI) to localize the brain regions with impaired cerebrovascular reactivity (CVR) in a female patient diagnosed with mild traumatic brain injury (mTBI). The extent of impaired CVR was evaluated 2 months after concussion. Follow-up scan was performed 1 year post-mTBI using the same breath-hold fMRI technique. RESEARCH DESIGN: Case report. METHODS AND PROCEDURES: fMRI blood oxygenation dependent level (BOLD) signals were measured under breath-hold challenge in a female mTBI patient 2 months after concussion followed by a second fMRI with breath-hold challenge 1 year later. CVR was expressed as the percentage change of BOLD signals per unit time of breath-hold. MAIN OUTCOMES: In comparison with CVR measurement of normal control subjects, statistical maps of CVR revealed substantial neurovascular deficits and hemispheric asymmetry within grey and white matter in the initial breath-hold fMRI scan. Follow-up breath-hold fMRI performed 1 year post-mTBI demonstrated normalization of CVR accompanied with symptomatic recovery. CONCLUSIONS: CVR may serve as an imaging biomarker to detect subtle deficits in both grey and white matter for individual diagnosis of mTBI. The findings encourage further investigation of hypercapnic fMRI as a diagnostic tool for mTBI.


Subject(s)
Brain Injuries/physiopathology , Hypercapnia/pathology , Magnetic Resonance Imaging , Biomarkers , Brain Injuries/pathology , Breath Holding , Cerebrovascular Circulation , Female , Humans , Hypercapnia/blood , Magnetic Resonance Imaging/methods , Middle Aged , Oxygen/blood , Recovery of Function , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...