Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Nanoscale ; 16(12): 5999-6009, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38391244

ABSTRACT

Flexible pressure sensors, an important class of intelligent sensing devices, are widely explored in body-motion and medical health monitoring, artificial intelligence and human-machine interaction. As a unique layered nanomaterial, black phosphorus (BP) has excellent electrical, mechanical, and flexible characteristics, which make it a promising candidate for fabricating high-performance pressure sensors. Herein, hierarchically structured BP-based pressure sensors were constructed. The sensors exhibit high sensitivity, stability and a wide sensing range and respond to various human motions including finger pressure, swallowing, and wrist bending. The sensors can identify different handwriting processes with featured signals. In particular, benefiting from the unique structure of loose-dense layers, the sensors show a distinctive response to bending angles and directions, revealing a characteristic of direction recognition. This feature facilitates the sensors to monitor human motions. The sensors have been successfully powered by a home-made Cu2ZnSn(S,Se)4 thin-film solar cell, which demonstrates the sustainability, flexibility and low power consumption of integrated devices. This work offers a strategy to construct hierarchically structured pressure/strain sensors with direction recognition and provides further insights into manufacturing portable sensing devices for realistic and innovative applications.

2.
Nat Commun ; 14(1): 7025, 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37919261

ABSTRACT

Interacting electrons in one dimension (1D) are governed by the Luttinger liquid (LL) theory in which excitations are fractionalized. Can a LL-like state emerge in a 2D system as a stable zero-temperature phase? This question is crucial in the study of non-Fermi liquids. A recent experiment identified twisted bilayer tungsten ditelluride (tWTe2) as a 2D host of LL-like physics at a few kelvins. Here we report evidence for a 2D anisotropic LL state down to 50 mK, spontaneously formed in tWTe2 with a twist angle of ~ 3o. While the system is metallic-like and nearly isotropic above 2 K, a dramatically enhanced electronic anisotropy develops in the millikelvin regime. In the anisotropic phase, we observe characteristics of a 2D LL phase including a power-law across-wire conductance and a zero-bias dip in the along-wire differential resistance. Our results represent a step forward in the search for stable LL physics beyond 1D.

3.
Rev Sci Instrum ; 94(10)2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37823766

ABSTRACT

Optical spectroscopy of quantum materials at ultralow temperatures is rarely explored, yet it may provide critical characterizations of quantum phases not possible using other approaches. We describe the development of a novel experimental platform that enables optical spectroscopic studies, together with standard electronic transport, of materials at millikelvin temperatures inside a dilution refrigerator. The instrument is capable of measuring both bulk crystals and micrometer-sized two-dimensional van der Waals materials and devices. We demonstrate its performance by implementing photocurrent-based Fourier transform infrared spectroscopy on a monolayer WTe2 device and a multilayer 1T-TaS2 crystal, with a spectral range available from the near-infrared to the terahertz regime and in magnetic fields up to 5 T. In the far-infrared regime, we achieve spectroscopic measurements at a base temperature as low as ∼43 mK and a sample electron temperature of ∼450 mK. Possible experiments and potential future upgrades of this versatile instrumental platform are envisioned.

4.
Med Image Anal ; 84: 102725, 2023 02.
Article in English | MEDLINE | ID: mdl-36527770

ABSTRACT

The Aggressive Posterior Retinopathy of Prematurity (AP-ROP) is the major cause of blindness for premature infants. The automatic diagnosis method has become an important tool for detecting AP-ROP. However, most existing automatic diagnosis methods were with heavy complexity, which hinders the development of the detecting devices. Hence, a small network (student network) with a high imitation ability is exactly needed, which can mimic a large network (teacher network) with promising diagnostic performance. Also, if the student network is too small due to the increasing gap between teacher and student networks, the diagnostic performance will drop. To tackle the above issues, we propose a novel adversarial learning-based multi-level dense knowledge distillation method for detecting AP-ROP. Specifically, the pre-trained teacher network is utilized to train multiple intermediate-size networks (i.e., teacher-assistant networks) and one student network by dense transmission mode, where the knowledge from all upper-level networks is transmitted to the current lower-level network. To ensure that two adjacent networks can distill the abundant knowledge, the adversarial learning module is leveraged to enforce the lower-level network to generate the features that are similar to those of the upper-level network. Extensive experiments demonstrate that our proposed method can realize the effective knowledge distillation from the teacher to student networks. We achieve a promising knowledge distillation performance for our private dataset and a public dataset, which can provide a new insight for devising lightweight detecting systems of fundus diseases for practical use.


Subject(s)
Retinopathy of Prematurity , Infant , Infant, Newborn , Humans , Learning , Fundus Oculi , Infant, Premature
5.
Nano Lett ; 22(21): 8495-8501, 2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36279401

ABSTRACT

The extreme versatility of van der Waals materials originates from their ability to exhibit new electronic properties when assembled in close proximity to dissimilar crystals. For example, although graphene is inherently nonmagnetic, recent work has reported a magnetic proximity effect in graphene interfaced with magnetic substrates, potentially enabling a pathway toward achieving a high-temperature quantum anomalous Hall effect. Here, we investigate heterostructures of graphene and chromium trihalide magnetic insulators (CrI3, CrBr3, and CrCl3). Surprisingly, we are unable to detect a magnetic exchange field in the graphene but instead discover proximity effects featuring unprecedented gate tunability. The graphene becomes highly hole-doped due to charge transfer from the neighboring magnetic insulator and further exhibits a variety of atypical gate-dependent transport features. The charge transfer can additionally be altered upon switching the magnetic states of the nearest CrI3 layers. Our results provide a roadmap for exploiting proximity effects arising in graphene coupled to magnetic insulators.

6.
Nat Commun ; 13(1): 1668, 2022 Mar 29.
Article in English | MEDLINE | ID: mdl-35351900

ABSTRACT

The interplay between band topology and magnetism can give rise to exotic states of matter. For example, magnetically doped topological insulators can realize a Chern insulator that exhibits quantized Hall resistance at zero magnetic field. While prior works have focused on ferromagnetic systems, little is known about band topology and its manipulation in antiferromagnets. Here, we report that MnBi2Te4 is a rare platform for realizing a canted-antiferromagnetic (cAFM) Chern insulator with electrical control. We show that the Chern insulator state with Chern number C = 1 appears as the AFM to canted-AFM phase transition happens. The Chern insulator state is further confirmed by observing the unusual transition of the C = 1 state in the cAFM phase to the C = 2 orbital quantum Hall states in the magnetic field induced ferromagnetic phase. Near the cAFM-AFM phase boundary, we show that the dissipationless chiral edge transport can be toggled on and off by applying an electric field alone. We attribute this switching effect to the electrical field tuning of the exchange gap alignment between the top and bottom surfaces. Our work paves the way for future studies on topological cAFM spintronics and facilitates the development of proof-of-concept Chern insulator devices.

7.
Science ; 374(6571): 1140-1144, 2021 Nov 26.
Article in English | MEDLINE | ID: mdl-34822270

ABSTRACT

Moiré superlattices of twisted nonmagnetic two-dimensional (2D) materials are highly controllable platforms for the engineering of exotic correlated and topological states. Here, we report emerging magnetic textures in small-angle twisted 2D magnet chromium triiodide (CrI3). Using single-spin quantum magnetometry, we directly visualized nanoscale magnetic domains and periodic patterns, a signature of moiré magnetism, and measured domain size and magnetization. In twisted bilayer CrI3, we observed the coexistence of antiferromagnetic (AFM) and ferromagnetic (FM) domains with disorder-like spatial patterns. In twisted double-trilayer CrI3, AFM and FM domains with periodic patterns appear, which is in good agreement with the calculated spatial magnetic structures that arise from the local stacking-dependent interlayer exchange interactions in CrI3 moiré superlattices. Our results highlight magnetic moiré superlattices as a platform for exploring nanomagnetism.

8.
Nano Lett ; 21(18): 7691-7698, 2021 Sep 22.
Article in English | MEDLINE | ID: mdl-34468149

ABSTRACT

Recently, MnBi2Te4 has been demonstrated to be an intrinsic magnetic topological insulator and the quantum anomalous Hall (QAH) effect was observed in exfoliated MnBi2Te4 flakes. Here, we used molecular beam epitaxy (MBE) to grow MnBi2Te4 films with thickness down to 1 septuple layer (SL) and performed thickness-dependent transport measurements. We observed a nonsquare hysteresis loop in the antiferromagnetic state for films with thickness greater than 2 SL. The hysteresis loop can be separated into two AH components. We demonstrated that one AH component with the larger coercive field is from the dominant MnBi2Te4 phase, whereas the other AH component with the smaller coercive field is from the minor Mn-doped Bi2Te3 phase. The extracted AH component of the MnBi2Te4 phase shows a clear even-odd layer-dependent behavior. Our studies reveal insights on how to optimize the MBE growth conditions to improve the quality of MnBi2Te4 films.

9.
Sci Adv ; 7(36): eabg8094, 2021 Sep 03.
Article in English | MEDLINE | ID: mdl-34516904

ABSTRACT

The development of van der Waals (vdW) crystals and their heterostructures has created a fascinating platform for exploring optoelectronic properties in the two-dimensional (2D) limit. With the recent discovery of 2D magnets, the control of the spin degree of freedom can be integrated to realize 2D spin-optoelectronics. Here, we report spin photovoltaic effects in vdW heterostructures of 2D magnet chromium triiodide (CrI3) sandwiched by graphene contacts. The photocurrent displays a distinct dependence on light helicity, which can be tuned by varying the magnetic states and photon energy. Circular polarization­resolved absorption measurements reveal that these observations originate from magnetic order­coupled and, thus, helicity-dependent charge-transfer excitons. The photocurrent displays multiple plateaus as the magnetic field is swept, associated with different CrI3 spin configurations. Giant photo-magnetocurrent is observed, which tends to infinity for a small applied bias. Our results pave the way to explore emergent photospintronics by engineering magnetic vdW heterostructures.

10.
Nat Commun ; 12(1): 1989, 2021 Mar 31.
Article in English | MEDLINE | ID: mdl-33790290

ABSTRACT

The emergence of atomically thin van der Waals magnets provides a new platform for the studies of two-dimensional magnetism and its applications. However, the widely used measurement methods in recent studies cannot provide quantitative information of the magnetization nor achieve nanoscale spatial resolution. These capabilities are essential to explore the rich properties of magnetic domains and spin textures. Here, we employ cryogenic scanning magnetometry using a single-electron spin of a nitrogen-vacancy center in a diamond probe to unambiguously prove the existence of magnetic domains and study their dynamics in atomically thin CrBr3. By controlling the magnetic domain evolution as a function of magnetic field, we find that the pinning effect is a dominant coercivity mechanism and determine the magnetization of a CrBr3 bilayer to be about 26 Bohr magnetons per square nanometer. The high spatial resolution of this technique enables imaging of magnetic domains and allows to locate the sites of defects that pin the domain walls and nucleate the reverse domains. Our work highlights scanning nitrogen-vacancy center magnetometry as a quantitative probe to explore nanoscale features in two-dimensional magnets.

11.
Nano Lett ; 21(6): 2544-2550, 2021 Mar 24.
Article in English | MEDLINE | ID: mdl-33710884

ABSTRACT

MnBi2Te4, a van der Waals magnet, is an emergent platform for exploring Chern insulator physics. Its layered antiferromagnetic order was predicted to enable even-odd layer number dependent topological states. Furthermore, it becomes a Chern insulator when all spins are aligned by an applied magnetic field. However, the evolution of the bulk electronic structure as the magnetic state is continuously tuned and its dependence on layer number remains unexplored. Here, employing multimodal probes, we establish one-to-one correspondence between bulk electronic structure, magnetic state, topological order, and layer thickness in atomically thin MnBi2Te4 devices. As the magnetic state is tuned through the canted magnetic phase, we observe a band crossing, i.e., the closing and reopening of the bulk band gap, corresponding to the concurrent topological phase transition in both even- and odd-layer-number devices. Our findings shed new light on the interplay between band topology and magnetic order in this newly discovered topological magnet.

12.
Neural Regen Res ; 16(9): 1848-1855, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33510092

ABSTRACT

High mobility group box 1 (HMGB1) interacts with pattern-recognition receptors of immune cells to activate the inflammatory response. Astrocytes play a positive role in the inflammatory response of the central nervous system by expressing a broad range of pattern-recognition receptors. However, the underlying relationship between HMGB1 and the inflammatory reaction of astrocytes remains unclear. In this study, we established rat models of spinal cord injury via laminectomy at the T8-10 level, and the injured spinal cord was subjected to transcriptome sequencing. Our results showed that the HMGB1/Toll-like receptor 4 (TLR4) axis was involved in the activation of astrocyte inflammatory response through regulation of cyclooxygenase 2 (COX2)/prostaglandin E2 (PGE2) signaling. Both TLR4 and COX2 were distributed in astrocytes and showed elevated protein levels following spinal cord injury. Stimulation of primary astrocytes with recombinant HMGB1 showed that COX2 and microsomal PGE synthase (mPGES)-1, rather than COX1, mPGES-2, or cytosolic PGE synthase, were significantly upregulated. Accordingly, PGE2 production in astrocytes was remarkably increased in response to recombinant HMGB1 challenges. Pharmacologic blockade of TLR2/4 attenuated HMGB1-mediated activation of the COX2/PGE2 pathway. Interestingly, HMGB1 did not impact the production of tumor necrosis factor-α or interleukin-1ß in astrocytes. Our results suggest that HMGB1 mediates the astrocyte inflammatory response through regulating the COX2/PGE2 signaling pathway. The study was approved by the Laboratory Animal Ethics Committee of Nantong University, China (approval No. 20181204-001) on December 4, 2018.

13.
Neurosci Bull ; 36(7): 778-792, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32306216

ABSTRACT

SOCS3, a feedback inhibitor of the JAK/STAT signal pathway, negatively regulates axonal regrowth and inflammation in the central nervous system (CNS). Here, we demonstrated a distinct role of SOCS3 in the injured spinal cord of the gecko following tail amputation. Severing the gecko spinal cord did not evoke an inflammatory cascade except for an injury-stimulated elevation of the granulocyte/macrophage colony-stimulating factor (GM-CSF) and interferon gamma (IFN-γ) cytokines. Simultaneously, the expression of SOCS3 was upregulated in microglia, and unexpectedly not in neurons. Enforced expression of SOCS3 was sufficient to suppress the GM-CSF/IFN-γ-driven inflammatory responses through its KIR domain by attenuating the activities of JAK1 and JAK2. SOCS3 was also linked to GM-CSF/IFN-γ-induced cross-tolerance. Transfection of adenovirus overexpressing SOCS3 in the injured cord resulted in a significant decrease of inflammatory cytokines. These results reveal a distinct role of SOCS3 in the regenerating spinal cord, and provide new hints for CNS repair in mammals.


Subject(s)
Granulocyte-Macrophage Colony-Stimulating Factor , Interferon-gamma , Spinal Cord Regeneration , Suppressor of Cytokine Signaling 3 Protein/physiology , Animals , Granulocyte-Macrophage Colony-Stimulating Factor/physiology , Inflammation , Interferon-gamma/physiology , Lizards , Microglia , Neurons
14.
Nat Mater ; 19(5): 503-507, 2020 May.
Article in English | MEDLINE | ID: mdl-32152559

ABSTRACT

The integration of diverse electronic phenomena, such as magnetism and nontrivial topology, into a single system is normally studied either by seeking materials that contain both ingredients, or by layered growth of contrasting materials1-9. The ability to simply stack very different two-dimensional van der Waals materials in intimate contact permits a different approach10,11. Here we use this approach to couple the helical edges states in a two-dimensional topological insulator, monolayer WTe2 (refs. 12-16), to a two-dimensional layered antiferromagnet, CrI3 (ref. 17). We find that the edge conductance is sensitive to the magnetization state of the CrI3, and the coupling can be understood in terms of an exchange field from the nearest and next-nearest CrI3 layers that produces a gap in the helical edge. We also find that the nonlinear edge conductance depends on the magnetization of the nearest CrI3 layer relative to the current direction. At low temperatures this produces an extraordinarily large nonreciprocal current that is switched by changing the antiferromagnetic state of the CrI3.

15.
Nat Nanotechnol ; 15(3): 212-216, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31907441

ABSTRACT

The coupling between spin and charge degrees of freedom in a crystal gives rise to magneto-optical effects with applications in the sensitive detection of local magnetic order, optical modulation and data storage. In two-dimensional magnets these effects manifest themselves in the large magneto-optical Kerr effect1,2, spontaneous helical light emission3,4 from ferromagnetic (FM) monolayers and electric-field induced Kerr rotation5-7 and giant second-order non-reciprocal optical effects8 in antiferromagnetic (AFM) bilayers. Here we demonstrate the tuning of inelastically scattered light through symmetry control in atomically thin chromium triiodide (CrI3). In monolayers, we found an extraordinarily large magneto-optical Raman effect from an A1g phonon mode due to the emergence of FM order. The linearly polarized, inelastically scattered light rotates by ~40°, more than two orders of magnitude larger than the rotation from the magneto-optical Kerr effect under the same experimental conditions. In CrI3 bilayers, the same phonon mode becomes Davydov-split into two modes of opposite parity, which exhibit divergent selection rules that depend on inversion symmetry and the underlying magnetic order. We demonstrate the magneto-electrical control over these selection rules by activating or suppressing Raman activity for the odd-parity phonon mode and the magneto-optical rotation of scattered light from the even-parity phonon mode. Our work underlines the unique opportunities provided by two-dimensional magnets to control the combined time-reversal and inversion symmetries to manipulate Raman optical selection rules and for exploring emergent magneto-optical effects and spin-phonon coupled physics.

16.
FASEB J ; 33(12): 14798-14810, 2019 12.
Article in English | MEDLINE | ID: mdl-31689136

ABSTRACT

Macrophages and their initiation of acute inflammation have been defined to be functionally important in tissue repair and regeneration. In injury-induced production of macrophage migration inhibitory factor (MIF), which has been described as a pleiotropic protein that participates in multiple cellular and biologic processes, it is unknown whether it is involved in the regulation of macrophage events during the epimorphic regeneration. In the model of gecko tail amputation, the protein levels of gecko MIF (gMIF) have been determined to be significantly increased in the nerve cells of the spinal cord in association with the recruitment of macrophages to the lesion site. gMIF has been shown to interact with the CD74 receptor to promote the migration of macrophages through activation of Ras homolog gene family member A and to trigger inflammatory responses through MAPK signaling pathways. The determination of microsphere phagocytosis also indicated that gMIF could enhance macrophage phagocytosis. gMIF-mediated recruitment and activation of macrophages have been found to be necessary for gecko tail regeneration, as evidenced by the depletion of macrophages using clodronate liposomes. The results present a novel function of MIF during the epimorphic regeneration, which is beneficial for insights into its pleiotropic property.-Wang, Y., Wei, S., Song, H., Zhang, X., Wang, W., Du, N., Song, T., Liang, H., Chen, X., Wang, Y. Macrophage migration inhibitory factor derived from spinal cord is involved in activation of macrophages following gecko tail amputation.


Subject(s)
Macrophage Activation , Macrophage Migration-Inhibitory Factors/metabolism , Macrophages/immunology , Regeneration , Spinal Cord/metabolism , Animals , Antigens, Differentiation, B-Lymphocyte/metabolism , Cell Movement , Histocompatibility Antigens Class II/metabolism , Lizards , MAP Kinase Signaling System , Macrophage Migration-Inhibitory Factors/genetics , Macrophages/physiology , Neurons/metabolism , Neurons/physiology , Phagocytosis , Spinal Cord/physiology , Tail/physiology , ras Proteins/metabolism
17.
Nat Mater ; 18(12): 1298-1302, 2019 12.
Article in English | MEDLINE | ID: mdl-31659293

ABSTRACT

The physical properties of two-dimensional van der Waals crystals can be sensitive to interlayer coupling. For two-dimensional magnets1-3, theory suggests that interlayer exchange coupling is strongly dependent on layer separation while the stacking arrangement can even change the sign of the interlayer magnetic exchange, thus drastically modifying the ground state4-10. Here, we demonstrate pressure tuning of magnetic order in the two-dimensional magnet CrI3. We probe the magnetic states using tunnelling8,11-13 and scanning magnetic circular dichroism microscopy measurements2. We find that interlayer magnetic coupling can be more than doubled by hydrostatic pressure. In bilayer CrI3, pressure induces a transition from layered antiferromagnetic to ferromagnetic phase. In trilayer CrI3, pressure can create coexisting domains of three phases, one ferromagnetic and two antiferromagnetic. The observed changes in magnetic order can be explained by changes in the stacking arrangement. Such coupling between stacking order and magnetism provides ample opportunities for designer magnetic phases and functionalities.

18.
Nature ; 572(7770): 497-501, 2019 08.
Article in English | MEDLINE | ID: mdl-31367036

ABSTRACT

Layered antiferromagnetism is the spatial arrangement of ferromagnetic layers with antiferromagnetic interlayer coupling. The van der Waals magnet chromium triiodide (CrI3) has been shown to be a layered antiferromagnetic insulator in its few-layer form1, opening up opportunities for various functionalities2-7 in electronic and optical devices. Here we report an emergent nonreciprocal second-order nonlinear optical effect in bilayer CrI3. The observed second-harmonic generation (SHG; a nonlinear optical process that converts two photons of the same frequency into one photon of twice the fundamental frequency) is several orders of magnitude larger than known magnetization-induced SHG8-11 and comparable to the SHG of the best (in terms of nonlinear susceptibility) two-dimensional nonlinear optical materials studied so far12,13 (for example, molybdenum disulfide). We show that although the parent lattice of bilayer CrI3 is centrosymmetric, and thus does not contribute to the SHG signal, the observed giant nonreciprocal SHG originates only from the layered antiferromagnetic order, which breaks both the spatial-inversion symmetry and the time-reversal symmetry. Furthermore, polarization-resolved measurements reveal underlying C2h crystallographic symmetry-and thus monoclinic stacking order-in bilayer CrI3, providing key structural information for the microscopic origin of layered antiferromagnetism14-18. Our results indicate that SHG is a highly sensitive probe of subtle magnetic orders and open up possibilities for the use of two-dimensional magnets in nonlinear and nonreciprocal optical devices.

19.
J Mol Histol ; 50(4): 355-367, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31197516

ABSTRACT

Based on deep RNA sequencing of distal segments of lesioned sciatic nerves, a huge number of differentially expression genes (DEGs) were thus obtained and functionally analyzed. The inflammatory response was denoted as one of most significant biological processes following sciatic nerve injury. In the present study, ingenuity pathway analysis (IPA) demonstrated that macrophage migration inhibitory factor (MIF) was identified as a core regulator of inflammatory response through interaction with CD74 membrane receptor. By establishment of rat sciatic nerve transection model, we displayed that MIF was upregulated following sciatic nerve axotomy, in colocalization with Schwann cells (SCs). MIF promoted migration, proliferation, together with inflammatory responses of SCs in vitro. Immunoprecipitation showed that MIF interacted with CD74 receptor, through which to activate intracellular ERK and JNK signaling pathways. Interference of CD74 receptor using specific siRNA showed that the transcription of proinflammatory cytokines including TNF-α, IL-1ß, as well as cytokine receptor TLR4 in SCs was significantly attenuated, supporting an participation of MIF/CD74 signal axis in SCs inflammatory response. The data provide a novel role of MIF in eliciting inflammatory response of peripheral nerve injury, which might be beneficial for precise therapy of peripheral nerve inflammation.


Subject(s)
Antigens, Differentiation, B-Lymphocyte/metabolism , Histocompatibility Antigens Class II/metabolism , Inflammation/metabolism , Intramolecular Oxidoreductases/metabolism , Macrophage Migration-Inhibitory Factors/metabolism , Schwann Cells/metabolism , Sciatic Nerve/injuries , Animals , Cytokines/metabolism , Gene Expression Regulation , MAP Kinase Signaling System/drug effects , Peripheral Nerve Injuries/metabolism , Rats , Sequence Analysis, RNA
20.
Nano Lett ; 19(6): 3993-3998, 2019 06 12.
Article in English | MEDLINE | ID: mdl-31083954

ABSTRACT

The recent discovery of magnetism in atomically thin layers of van der Waals (vdW) crystals has created new opportunities for exploring magnetic phenomena in the two-dimensional (2D) limit. In most 2D magnets studied to date, the c-axis is an easy axis, so that at zero applied field the polarization of each layer is perpendicular to the plane. Here, we demonstrate that atomically thin CrCl3 is a layered antiferromagnetic insulator with an easy-plane normal to the c-axis, that is, the polarization is in the plane of each layer and has no preferred direction within it. Ligand-field photoluminescence at 870 nm is observed down to the monolayer limit, demonstrating its insulating properties. We investigate the in-plane magnetic order using tunneling magnetoresistance in graphene/CrCl3/graphene tunnel junctions, establishing that the interlayer coupling is antiferromagnetic down to the bilayer. From the temperature dependence of the magnetoresistance, we obtain an effective magnetic phase diagram for the bilayer. Our result shows that CrCl3 should be useful for studying the physics of 2D phase transitions and for making new kinds of vdW spintronic devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...