Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 15(11): 5293-5299, 2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36810904

ABSTRACT

Crystallization temperature is a critical parameter in the stabilization of the metastable ferroelectric phase of HfO2. The optimal crystallization temperature used for polycrystalline films is too low to grow epitaxial films. We have developed a new growth strategy, based on the use of an ultrathin seed layer, to obtain high-quality epitaxial films of orthorhombic Hf0.5Zr0.5O2 at a lower temperature. The threshold temperature for epitaxy is reduced from about 750 °C to about 550 °C using a seed layer. Epitaxial films deposited at low temperatures exhibit highly enhanced endurance, and films grown at 550-600 °C show high polarization, no wake-up effect, and greatly reduced fatigue and improved endurance in comparison with the films deposited at high temperatures without a seed layer. We propose that the endurance enhancement is due to a positive effect of the defects, which limits the propagation of pinned ferroelectric domains.

2.
Nanoscale ; 14(6): 2337-2343, 2022 Feb 10.
Article in English | MEDLINE | ID: mdl-35088065

ABSTRACT

The metastable orthorhombic phase of Hf0.5Zr0.5O2 (HZO) can be stabilized in thin films on La0.67Sr0.33MnO3 (LSMO) buffered (001)-oriented SrTiO3 (STO) by intriguing epitaxy that results in (111)-HZO oriented growth and robust ferroelectric properties. Here, we show that the orthorhombic phase can also be epitaxially stabilized on LSMO/STO(110), presenting the same out-of-plane (111) orientation but a different distribution of the in-plane crystalline domains. The remanent polarization of HZO films with a thickness of less than 7 nm on LSMO/STO(110) is 33 µC cm-3, which corresponds to a 50% improvement over equivalent films on LSMO/STO(001). Furthermore, HZO on LSMO/STO(110) presents higher endurance, switchable polarization is still observed up to 4 × 1010 cycles, and retention of more than 10 years. These results demonstrate that tuning the epitaxial growth of ferroelectric HfO2, here using STO(110) substrates, allows the improvement of functional properties of relevance for memory applications.

3.
ACS Appl Electron Mater ; 3(11): 4809-4816, 2021 Nov 23.
Article in English | MEDLINE | ID: mdl-34841249

ABSTRACT

Epitaxial thin films of HfO2 doped with La have been grown on SrTiO3(001) and Si(001), and the impact of the La concentration on the stabilization of the ferroelectric phase has been determined. Films with 2-5 at. % La doping present the least amount of paraelectric monoclinic and cubic phases and exhibit the highest polarization, having a remanent polarization above 20 µC/cm2. The dopant concentration results in an important effect on the coercive field, which is reduced with increasing La content. Combined high polarization, high retention, and high endurance of at least 1010 cycles is obtained in 5 at. % La-doped films.

4.
Nanoscale ; 12(20): 11280-11287, 2020 May 28.
Article in English | MEDLINE | ID: mdl-32420576

ABSTRACT

Ferroelectric HfO2 is a promising material for new memory devices, but significant improvement of its important properties is necessary for practical application. However, previous literature shows that a dilemma exists between polarization, endurance and retention. Since all these properties should be simultaneously high, overcoming this issue is of the highest relevance. Here, we demonstrate that high crystalline quality sub-5 nm Hf0.5Zr0.5O2 capacitors, integrated epitaxially with Si(001), present combined high polarization (2Pr of 27 µC cm-2 in the pristine state), endurance (2Pr > 6 µC cm-2 after 1011 cycles) and retention (2Pr > 12 µC cm-2 extrapolated at 10 years) using the same poling conditions (2.5 V). This achievement is demonstrated in films thinner than 5 nm, thus opening bright possibilities in ferroelectric tunnel junctions and other devices.

5.
Nanoscale Res Lett ; 12(1): 607, 2017 Nov 28.
Article in English | MEDLINE | ID: mdl-29181638

ABSTRACT

Multi-walled carbon nanotubes (MWCNTs) and graphenes have been taken for novel reinforcements due to their unique structure and performance. However, MWCNTs or graphenes reinforced copper matrix composites could not catch up with ideal value due to reinforcement dispersion in metal matrix, wettability to metal matrix, and composite material interface. Taking advantage of the superior properties of one-dimensional MWCNTs and two-dimensional graphenes, complementary performance and structure are constructed to create a high contact area between MWCNTs and graphenes to the Cu matrix. Mechanical alloying, hot pressing, and hot isostatic pressing techniques are used to fabricate Cu matrix self-lubricating nanocomposites. Effects of MWCNTs and graphenes on mechanical properties and microstructures of Cu/Ti3SiC2/C nanocomposites are studied. The fracture and strengthening mechanisms of Cu/Ti3SiC2/C nanocomposites are explored on the basis of structure and composition of Cu/Ti3SiC2/C nanocomposites with formation and function of interface.

SELECTION OF CITATIONS
SEARCH DETAIL
...