Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 14: 1207078, 2023.
Article in English | MEDLINE | ID: mdl-37915509

ABSTRACT

Thinopyrum intermedium (2n=6x=42, StStJrJrJvsJvs) is resistant or tolerant to biotic and abiotic stresses, making it suitable for developing perennial crops and forage. Through five cycles of selection, we developed 24 perennial wheatgrass lines, designated 19HSC-Q and 20HSC-Z, by crossing wheat-Th. intermedium partial amphiploids with Th. intermedium. The cold resistance, morphological performance, chromosome composition, and yield components of these perennial lines were investigated from 2019 to 2022. Six lines of 19HSC-Q had higher 1,000-kernel weight, grains per spike, and tiller number than Th. intermedium, as well as surviving -30°C in winter. Lines 19HSC-Q14, 19HSC-Q18, and 19HSC-Q20 had the best performances for grain number per spike and 1,000-kernel weight. The 20HSC-Z lines, 20HSC-Z1, 20HSC-Z2, and 20HSC-Z3, were able to survive in the cold winter in Harbin and had been grown for two years. Sequential multicolor GISH analysis revealed that the Jvs subgenome of Th. intermedium were divided into two karyotypes, three pairs of type-I Jvs chromosomes and four pairs of type-II Jvs chromosomes. Both Th. intermedium and the 24 advanced perennial wheatgrass lines had similar chromosome compositions, but the translocations among subgenome chromosomes were detected in some lines with prominent agronomic traits, such as 19HSC-Q11, 19HSC-Q14, 19HSC-Q18, 19HSC-Q20, and the three 20HSC-Z lines. The chromosome aberrations were distinguished into two types: the large fragment translocation with St-Jr, Jvs-St, Jr-IIJvs, and Jvs-Jr and the small fragment introgression of Jr-St, St-IJvs, and Jvs-Jr. These chromosomal variations can be used to further analyze the relationship between the subgenomes and phenotypes of Th. intermedium. The results of this study provide valuable materials for the next selection cycle of cold-resistant perennial wheatgrass.

2.
Mol Cytogenet ; 14(1): 15, 2021 Mar 06.
Article in English | MEDLINE | ID: mdl-33676531

ABSTRACT

BACKGROUND: Partial amphiploids created by crossing octoploid tritelytrigia(2n = 8× = 56, AABBDDEE) and Thinopyrum intermedium (2n = 6× = 42, StStJJJSJS) are important intermediates in wheat breeding because of their resistance to major wheat diseases. We examined the chromosome compositions of five wheat-Th. intermedium partial amphiploids using GISH and multicolor-FISH. RESULTS: The result revealed that five lines had 10-14 J-genome chromosomes from Th. intermedium and 42 common wheat chromosomes, using the J-genomic DNA from Th. bessarabicum as GISH probe and the oligo probes pAs1-1, pAs1-3, AFA-4, (GAA) 10, and pSc119.2-1 as FISH probe. Five lines resembled their parent octoploid tritelytrigia (2n = 8× = 56, AABBDDEE) but had higher protein contents. Protein contents of two lines HS2-2 and HS2-5 were up to more than 20%. Evaluation of Fusarium head blight (FHB) resistance revealed that the percent of symptomatic spikelets (PSS) of these lines were below 30%. Lines HS2-2, HS2-4, HS2-5, and HS2-16 were less than 20% of PPS. Line HS2-5 with 14 J-genome chromosomes from Th. intermedium showed the best disease resistance, with PSS values of 10.8% and 16.6% in 2016 and 2017, respectively. CONCLUSIONS: New wheat-Th. intermedium amphiploids with the J-genome chromosomes were identified and can be considered as a valuable source of FHB resistance in wheat breeding.

3.
Biotechnol Biotechnol Equip ; 28(1): 8-13, 2014 Jan 02.
Article in English | MEDLINE | ID: mdl-26019483

ABSTRACT

Intergeneric crop plant hybrid lines with small-segment chromosome translocations are very useful in plant genetic research and breeding. In this study, to create small-segment chromosome translocations with beneficial agronomic characters, the progeny of wheat-rye substitution lines 5R/5A and 6R/6A were selected from generations F2 to F5 for rye-specific characteristics. A PCR primer and specific simple sequence repeat marker for rye were used in F5 populations to detect rye chromatin and to amplify a specific chromosome band in six translocation lines (06-6-5, 06-6-6, 06-6-9, 6-26-1, 7-23, and 7-33). Fragment pSc119.1 cloned from 7-33 had 99% homology with the big ear gene sequence (GenBank AF512607.1) in wheat. The six lines were further characterized via pollen mother cell meiosis analysis for genetic stability, and chromosome C-banding and genomic in situ hybridization for rye chromatin. The results show that line 7-33 was still within the 5R/5A substitution lines and possessed the big ear gene. The other lines all contained small-segment rye chromosome translocations. The results indicated that substitution line hybridization is an effective method for creating small-segment chromosome translocations with useful agronomic traits. Trials for these six wheat-rye translocation lines are justified because they possess many important stably-inherited agronomic characters, including disease resistance and improved yield.

SELECTION OF CITATIONS
SEARCH DETAIL
...