Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 187
Filter
1.
Discov Oncol ; 15(1): 165, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38748048

ABSTRACT

OBJECTIVE: Circular RNAs (circRNAs) are involved in the development of human cancers, including cervical cancer (CC). However, the role and mechanism of circ_0006789 (circSLC25A43) in CC are unclear. The purpose of this study was to investigate the functional role of circ_0006789 in CC. METHODS: The expression of circ_0006789 in CC tissues and cell lines was examined by RT-qPCR. The characterization of circ_0006789 in CC cells was verified by subcellular localisation, actinomycin D assay, and RNase R assay. After circ_0006789 was knocked down in CC cell lines, the proliferation, apoptosis, migration and invasion of CC cells were assessed by CCK-8 method, flow cytometry, and Transwell assay. RIP assay, FISH assay, dual luciferase reporter gene assay and Western blot were used to investigate the regulatory mechanism between circ_0006789, miR-615-5p and heat shock factor 1 (HSF1). RESULTS: circ_0006789 was upregulated in CC tissues and cell lines. CC cells were inhibited in their proliferation, migration, and invasion, as well as promoted to apoptosis when circ_0006789 was knocked down. It was found that circ_0006789 targeted miR-615-5p, and miR-615-5p expression was inversely correlated with circ_0006789 expression. Furthermore, HSF1 was a target gene of miR-615-5p. Furthermore, the suppressive effects on HeLa cells mediated by circ_0006789 knockdown were counter-balanced when miR-615-5p was knocked down and HSF1 was overexpressed. Mechanistically, circ_0006789 was found to promote CC development by reducing miR-615-5p and increasing HSF1 expressions. CONCLUSION: circ_0006789 accelerates CC development via the miR-615-5p/HSF1 axis.

2.
Sci Rep ; 14(1): 8034, 2024 04 05.
Article in English | MEDLINE | ID: mdl-38580647

ABSTRACT

Post-hepatectomy liver failure (PHLF) is a potentially life-threatening complication following liver resection. Hepatocellular carcinoma (HCC) often occurs in patients with chronic liver disease, which increases the risk of PHLF. This study aimed to investigate the ability of the combination of liver function and fibrosis markers (ALBI score and FIB-4 index) to predict PHLF in patients with HCC. Patients who underwent hepatectomy for HCC between August 2012 and September 2022 were considered for inclusion. Multivariable logistic regression analysis was used to identify factors associated with PHLF, and ALBI score and FIB-4 index were combined based on their regression coefficients. The performance of the combined ALBI-FIB4 score in predicting PHLF and postoperative mortality was compared with Child-Pugh score, MELD score, ALBI score, and FIB-4 index. A total of 215 patients were enrolled in this study. PHLF occurred in 35 patients (16.3%). The incidence of severe PHLF (grade B and grade C PHLF) was 9.3%. Postoperative 90-d mortality was 2.8%. ALBI score, FIB-4 index, prothrombin time, and extent of liver resection were identified as independent factors for predicting PHLF. The AUC of the ALBI-FIB4 score in predicting PHLF was 0.783(95%CI: 0.694-0.872), higher than other models. The ALBI-FIB4 score could divide patients into two risk groups based on a cut-off value of - 1.82. High-risk patients had a high incidence of PHLF of 39.1%, while PHLF just occurred in 6.6% of low-risk patients. Similarly, the AUCs of the ALBI-FIB4 score in predicting severe PHLF and postoperative 90-d mortality were also higher than other models. Preoperative ALBI-FIB4 score showed good performance in predicting PHLF and postoperative mortality in patients undergoing hepatectomy for HCC, superior to the currently commonly used liver function and fibrosis scoring systems.


Subject(s)
Carcinoma, Hepatocellular , Liver Failure , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/pathology , Hepatectomy/adverse effects , Liver Neoplasms/pathology , Prognosis , Serum Albumin/analysis , Liver Failure/diagnosis , Liver Failure/etiology , Fibrosis , Retrospective Studies
3.
Mar Biotechnol (NY) ; 26(2): 351-363, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38498104

ABSTRACT

Light is an essential ecological factor that has been demonstrated to affect aquatic animals' behavior, growth performance, and energy metabolism. Our previous study found that the full-spectrum light and cyan light could promote growth performance and molting frequency of Scylla paramamosain while it was suppressed by violet light. Hence, the purpose of this study is to investigate the underlying molecular mechanism that influences light spectral composition on the growth performance and molting of S. paramamosain. RNA-seq analysis and qPCR were employed to assess the differentially expressed genes (DEGs) of eyestalks from S. paramamosain reared under full-spectrum light (FL), violet light (VL), and cyan light (CL) conditions after 8 weeks trial. The results showed that there are 5024 DEGs in FL vs. VL, 3398 DEGs in FL vs. CL, and 3559 DEGs in VL vs. CL observed. GO analysis showed that the DEGs enriched in the molecular function category involved in chitin binding, structural molecular activity, and structural constituent of cuticle. In addition, the DEGs in FL vs. VL were mainly enriched in the ribosome, amino sugar and nucleotide sugar metabolism, lysosome, apoptosis, and antigen processing and presentation pathways by KEGG pathway analysis. Similarly, ribosome, lysosome, and antigen processing and presentation pathways were major terms that enriched in FL vs. CL group. However, only the ribosome pathway was significantly enriched in up-regulated DEGs in VL vs. CL group. Furthermore, five genes were randomly selected from DEGs for qPCR analysis to validate the RNA-seq data, and the result showed that there was high consistency between the RNA-seq and qPCR. Taken together, violet light exposure may affect the growth performance of S. paramamosain by reducing the ability of immunity and protein biosynthesis, and chitin metabolism.


Subject(s)
Brachyura , Chitin , Gene Expression Profiling , Light , Molting , Transcriptome , Animals , Chitin/metabolism , Molting/genetics , Brachyura/genetics , Brachyura/metabolism , Brachyura/growth & development
5.
Plant Dis ; 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38411606

ABSTRACT

Praxelis clematidea is an invasive herbaceous plant belonging to Asteraceae family. From August to November 2020, the plants showing severe witches'-broom symptoms were found in farms and roadsides from Ding'an of Hainan Province, a tropical island of China. The disease symptoms were suggestive of phytoplasma infection. For pathogen detection, P. clematidea samples consisting of six symptomatic and three asymptomatic plants were collected from the farms and roadsites of Ding'an with 40 % incidence by conducting surveys and statistics. Total nucleic acids were extracted using 0.10 g of fresh leaf tissues of the plant through CTAB DNA extraction method. Conserved gene sequences of 16S rRNA and secA genes from phytoplasma were amplified by direct PCR using primer pairs of R16mF2/R16mR1 and secAfor1/secArev3, respectively. R16mF2/R16mR1 PCR amplicons were obtained for all symptomatic samples but not from the symptomless plants. The amplicons were purified and sequenced by Biotechnology (Shanghai) Co., Ltd. (Guangzhou, China). Sequences of 16S rRNA gene (1323 bp) and secA (732 bp) were obtained and all the gene sequences were identical, designated as PcWB (Praxelis clematidea witches'-broom)-hnda. Representative sequencs were deposited in Genbank with accession numbers of PP098736 (16S rDNA) and PP072216 (secA). Nucleotide BLAST (Basic Local Alignment Search Tool) search based on 16S rRNA gene sequences indicated that PcWB-hnda had 100% sequence identity (1323/1323) with 'Candidatus Phytoplasma asteris'-related strains belonging to 16SrI group like Waltheria indica virescence phytoplasma (MW353909) and Capsicum annuum yellow crinkle phytoplasma (MT760793); had 99.62 % sequence identity (1321/1326) with the phytoplasma strains of 16SrI group such as Oenothera phytoplasma (M30790). RFLP (Restriction Fragment Length Polymorphism) pattern derived from 16Sr RNA gene sequences by iPhyClassifier showed identical (similarity coefficient=1.00) to the reference pattern of 16SrI-B subgroup (GenBank accession number: AP006628). The results obtained demonstrate that the phytoplasma strain PcWB-hnda under study is a member of 16SrI-B subgroup. A BLAST search based on secA gene sequences indicated that PcWB-hnda shares 100% sequence identity (732/732 bp) with Pericampylus glaucus witches'-broom phytoplasma (MT875200), 99% sequence identify (728/732 bp) with onion yellows phytoplasma OY-M(AP006628), and 99% sequence identify (729/732 bp) with rapeseed phyllody phytoplasma isolate RP166 (CP055264), among other phytoplasma strains that belong to 16SrI group. Previous studies demonstrated that P. clematidea can be infected by phytoplasmas affiliate to the 16SrII group (GenBank accession number: KY568717 and EF061924) in Hainan Island of China. To our knowledge, this is the first report of a natural infection of P. clematidea by a group 16SrI phytoplasma in the Island of China. 16SrI group can infect agronomic important species such as areca palm in the island and P. clematidea can be a reservoir of 16SrI phytoplasmas. Therefore, it is necessary to search of potential vectors of the pathogens, which would contribute to epidemiological monitoring and prevention of the related diseases.

6.
Plant Dis ; 2024 Feb 04.
Article in English | MEDLINE | ID: mdl-38311796

ABSTRACT

Phytoplasmas are phloem-limited plant pathogenic prokaryotes which can not be cultured in vitro. The pathogens could cause various plant symptoms such as witches'-broom, virescence, and leaf yellows. Ipomoea obscura is a valuable plant species belonging to the family Convolvulaceae, mainly used as a traditional Chinese medicine used to treat diseases such as dehydration and diuresis. In western countries it is commonly referred to as 'obscure morning glory'. During 2020 to 2021, plants showing abnormal symptoms including witches'-broom, internode shortening, and small leaves were found in Hainan Province, a tropical island of China. Approximately 30 % of I. obscura plants in the sampling regions which spanned 400 acres, showed symptoms. In order to identify the associated pathogen, six symptomatic samples and three asymptomatic samples were collected and total DNA were extracted from 0.10 g fresh plant leaf tissues using CTAB DNA extraction method. 16S rRNA and secA gene fragments, specific to phytoplasmas, were PCR amplified using primers R16mF2/R16mR1 and secAfor1/secArev3. The target PCR bands were obtained from the DNA of six symptomatic samples, whereas not from the DNA of the asymptomatic samples. The PCR products of phytoplasma 16S rRNA and secA gene obtained from the diseased samples were cloned and sequenced by Biotechnology (Shanghai) Co., Ltd. (Guangzhou, China). The 16S rRNA and secA gene sequences identified in the study were all identical with the length of 1330 bp (GenBank accession: OR625212) and 720 bp (OR635662) respectively. According to methods and protocols of phytoplasma identification and classification (Wei and Zhao, 2022), the phytoplasma strain identified in the study was described as Ipomoea obscura witches'-broom (IoWB) phytoplasma, IoWB-hnld strain. The partial 16S rRNA gene sequence of IoWB showed 100 % sequence identity over the full 1330 bp sequence to phytoplasmas belonging to 16SrII group like cassava witches'-broom phytoplasma (KM280679). The BLAST search of the 720 bp partial secA gene fragment of IoWB showed 100% sequence identity for the full sequence to phytoplasmas belonging to 16SrII group like 'Sesamum indicum' phyllody phytoplasma (OQ420657). RFLP analysis based on the 16S rRNA gene using iPhyClassifier demonstrated that the IoWB strain was a member of 16SrII-A subgroup with the similarity coefficient 1.00 to the reference phytoplasma strain (L33765). Phylogenetic analysis based on 16S rRNA and secA genes by MEGA 7.0 employing neighbor-joining (NJ) method with 1000 bootstrap value indicated that IoWB-hnld was clustered into one clade with the phytoplasmas belonging to 16SrII group, with 98% and 100% bootstrap value separately. To our knowledge, this is the first report that Ipomoea obscura can be infected by phytoplasmas belonging to 16SrII-A subgroup in China. This report adds to the host range of 'Ca. Phytoplasma aurantifolia', documenting the symptoms on I. obscura which will assist in monitoring and control of the associated pathogen.

7.
Org Lett ; 26(5): 1083-1087, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38277672

ABSTRACT

We report an efficient and mild approach for radical dearomatization via photoinduced palladium-catalyzed reaction of three components (i.e., furans, alcohols, and bromoalkanes). In this strategy, various functionalized spiro-heterocycles were prepared from furans in one step via cascade C-C/C-O bond formation under redox neutral conditions.

8.
Plant Dis ; 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38243180

ABSTRACT

Chinaberry (Melia azedarach), belonging to the family of Meliaceae, is an ornamental tree distributes across southern of China. In the autumn of 2021, In an area of 400 acres located in Wanning city of Hainan Province, a tropical island in China, with coordinates of 110°28'42.72″E, 19°2'9.96″N, about 20 % (100) of the chinaberry trees showed disease symptoms included chlorotic leaves. The disease symptoms were consistent with infections by a phloem-limited prokaryotic pathogen phytoplasma. The samples of six symptomatic and three asymptomatic were collected for pathogen detection. To identify the pathogen, total nucleic acids were extracted from 0.10 g fresh leaf tissues from the diseased and healthy plant using CTAB DNA extraction method based on Doyle and Doyle. Three primer pairs of R16mF2/R16mR1, secAfor1/secArev3 and fTuf1/rTuf1 were used for specific identification of phytoplasma conserved gene fragments of 16S rDNA, secA and tuf, PCR amplification. Target PCR bands were amplified from the DNA of six diseased chinaberry samples, but not from the DNA of the healthy samples. The products of amplified were cloned and sequenced by Biotechnology (Shanghai) Co., Ltd. (Guangzhou, China). The phytoplasma gene sequences of 16S rRNA, secA and tuf were obtained and all the sequences were identical with the length of 1336 bp, 710 bp and 955 bp, respectively. Representative sequence data for strain MaCL-hn were deposited in Genbank under accession Nos. OR438638 (16S rDNA), OR513089 (secA) and OR860415 (tuf). The phytoplasma strain identified in the study was described as chinaberry chlorotic leaf (MaCL) phytoplasma, MaCL-hn strain. BLAST search based on 16S rRNA genes showed that 43 strains in 16SrI group 'Candidatus Phytoplasma asteris' showed 100% similarity with the 16SRNA sequence of MaCL-hn. BLAST search based on secA genes showed that 9 strains in the phytoplasma group showed 100% similarity with the 16SRNA sequence of MaCL-hn. BLAST search based on tuf genes showed that 21 strains in the phytoplasma group showed 100% similarity with the 16SRNA sequence of MaCL-hn. RFLP analysis based on iPhyClassifier indicated that the MaCL-hn strain was a member of 16SrI-B subgroup with a similarity coefficient 1.00 to the reference phytoplasma strain (AP006628). Phylogenetic tree was constructed based on 16S rRNA by MEGA 11.0 using neighbor-joining (NJ) method with 1000 bootstrap value. The results showed that the MaCL-hn strains were clustered into one clade with 16SrI group 'Ca. Phytoplasma asteris' related strains with 99 % bootstrap value. Multilocus sequence analysis (MLSA) based on the concatenated sequences with the length of 3001 bp including the sequences of 16S rRNA, secA and tuf showed that the MaCL-hn strains were clustered into one clade with the phytoplasma strains in the group with 100 % bootstrap value. To our knowledge, this is the first report that chinaberry can be infected by 'Ca. Phytoplasma asteris'-related strains belonging to 16SrI-B subgroup on Hainan Island of China. This finding in the study will contribute to the epidemic monitoring and the preventive management of the phytoplasmas and their related diseases.

9.
Plant Dis ; 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38037205

ABSTRACT

Alocasia macrorrhiza, which belongs to the Araceae family, is an important landscape plant in China, and has of significant medicinal uses. In 2022, A. macrorrhiza displaying abnormal symptoms were found in Qionghai, Hainan Island of China (110°23'3.06″,19°7'56.29″). The incidence of symptomatic plants was about 40% in the sampled areas. The abnormal symptoms included that the ovoid leaves color turned yellow from green gradually, with ovoid leaves chlorosis, mesophyll tissue yellowing, miniature leaves and systemic wilting. The diseased symptoms suspected to be associated with phytoplasma according to the protocols of phytoplasma identification. In order to identify the pathogen, eleven diseased samples and three asymptomatic samples were collected from an area of about 40 hectares. Total DNAs were extracted from 0.10 g fresh plant leaf tissues using a CTAB DNA extraction method. PCR amplifications were performed using primers R16mF2/R16mR1 and fTuf1/rTuf1 specific for the phytoplasma 16S rRNA and tuf genes. Target PCR amplicons were obtained from the DNA of 11 diseased samples, whereas not from the DNA of the asymptomatic samples. The PCR products were cloned and sequenced by Biotechnology (Shanghai) Co., Ltd. (Guangzhou, China), and the obtained sequences were assembled, edited and analyzed using the EditSeq program and DNAMAN version 6.0. The phytoplasma 16S rRNA and tuf gene amplicons were 1336 and 930 bp in length, respectively. The sequences of all 16S rRNA and tuf amplicons in this study were identical. The sequencing data were deposited in GenBank with accession numbers OR466206 (16S rDNA) and OR513090 (tuf). According to the methods and protocols of phytoplasma identified and classification, the phytoplasma strain was described as Alocasia macrorrhiza yellows (AmY) phytoplasma, AmY-hn strain. BLAST search were conducted based on 16Sr RNA and tuf genes. The results showed that the AmY-hn had 100 % 16Sr RNA sequence identity (1336 bp out of 1336 bp) with that of 16SrI-B subgroup phytoplasmas like onion yellows phytoplasma (OY-M, AP006628). The AmY-hn had 100 % tuf sequence identity (930 bp out of 930 bp) with that of 16SrI-B subgroup phytoplasmas like OY-M. RFLP profiles obtained with iPhyClassifier demonstrated that AmY-hn strain was a member of the 16SrI-B subgroup with a similarity coefficient 1.00 to the reference phytoplasma strain (AP006628). Separated phylogenetic analysis based on 16S rRNA and tuf genes obtained with MEGA 7.0 using the neighbor-joining (NJ) method with 1000 bootstrap value indicated that AmY-hn clustered into one clade with phytoplasma strains of OY-M and chinaberry witches'-broom (KP662119) with 100 % and 87 % bootstrap value respectively. To our knowledge, this is the first report that a 'Candidatus Phytoplasma asteris'-related strain belonging to 16SrI-B subgroup infects A. macrorrhiza in China. The 16SrI-B subgroup 'Candidatus Phytoplasma asteris'-related strains can spread outwards through the plant A. macrorrhiza. Thus, the findings in the study will be beneficial to the detection of phytoplasmas which parasitic in this plant and the epidemic monitoring of the related diseases.

10.
Front Plant Sci ; 14: 1300522, 2023.
Article in English | MEDLINE | ID: mdl-38130485

ABSTRACT

Introduction: WRKY TFs (WRKY transcription factors) contribute to the synthesis of secondary metabolites in plants. Betalains are natural pigments that do not coexist with anthocyanins within the same plant. Amaranthus tricolor ('Suxian No.1') is an important leaf vegetable rich in betalains. However, the WRKY family members in amaranth and their roles in betalain synthesis and metabolism are still unclear. Methods: To elucidate the molecular characteristics of the amaranth WRKY gene family and its role in betalain synthesis, WRKY gene family members were screened and identified using amaranth transcriptome data, and their physicochemical properties, conserved domains, phylogenetic relationships, and conserved motifs were analyzed using bioinformatics methods. Results: In total, 72 WRKY family members were identified from the amaranth transcriptome. Three WRKY genes involved in betalain synthesis were screened in the phylogenetic analysis of WRKY TFs. RT-qPCR showed that the expression levels of these three genes in red amaranth 'Suxian No.1' were higher than those in green amaranth 'Suxian No.2' and also showed that the expression level of AtrWRKY42 gene short-spliced transcript AtrWRKY42-2 in Amaranth 'Suxian No.1' was higher than that of the complete sequence AtrWRKY42-1, so the short-spliced transcript AtrWRKY42-2 was mainly expressed in 'Suxian No.2' amaranth. Moreover, the total expression levels of AtrWRKY42-1 and AtrWRKY42-2 were down-regulated after GA3 treatment, so AtrWRKY42-2 was identified as a candidate gene. Therefore, the short splice variant AtrWRKY42-2 cDNA sequence, gDNA sequence, and promoter sequence of AtrWRKY42 were cloned, and the PRI 101-AN-AtrWRKY42-2-EGFP vector was constructed to evaluate subcellular localization, revealing that AtrWRKY42-2 is located in the nucleus. The overexpression vector pRI 101-AN-AtrWRKY42-2-EGFP and VIGS (virus-induced gene silencing) vector pTRV2-AtrWRKY42-2 were transferred into leaves of 'Suxian No.1' by an Agrobacterium-mediated method. The results showed that AtrWRKY42-2 overexpression could promote the expression of AtrCYP76AD1 and increase betalain synthesis. A yeast one-hybrid assay demonstrated that AtrWRKY42-2 could bind to the AtrCYP76AD1 promoter to regulate betalain synthesis. Discussion: This study lays a foundation for further exploring the function of AtrWRKY42-2 in betalain metabolism.

11.
Plant Dis ; 2023 Nov 12.
Article in English | MEDLINE | ID: mdl-37953232

ABSTRACT

Areca catechu palm is an important cash plant in Hainan Island of China and even tropical regions worldwide. Areca catechu palm yellow leaf (AcYL) disease caused by the phytoplasmas is a devastating disease for the plant production. In the study, the phytoplasmas associated with the AcYL diseases were identified and characterized based on the conserved genes of the phytoplasmas, and genetic variation and phylogenetic relationship of the phytoplasma strains in the 16SrXXXII group was demonstrated. The results indicated that Areca catechu palm showing yellow leaf symptoms were single infected by 'Candidatus Phytoplasma malaysianum'-related strains belonging to 16SrXXXII-D subgroup. BLAST and multiple sequence alignment analysis based on 16S rRNA and secA genes showed that the AcYL phytoplasmas shared 100% sequence identity and 100% homology with the 'Ca. Phytoplasma malaysianum'-related strains. Phylogenetic analysis indicated that the AcYL phytoplasmas and 'Ca. Phytoplasma malaysianum'-related strains belonging to 16SrXXXII group were clustered into one clade with a 100% bootstrap value. Based on computer-simulated digestions, 6 kinds of RFLP patterns within 16SrXXXII group were obtained and a novel subgroup in the 16Sr group was recommended to propose to describe the relevant strains in this 16Sr subgroup. To our knowledge, this is the first report that Areca catechu palm showing yellow leaf symptoms infected by 'Ca. Phytoplasma malaysianum'-related strains belonging to 16SrXXXII group. And a novel 16Sr subgroup 16SrXXXII-F was proposed based on the systematical analysis of genetic variation of all the phytoplasmas within 16SrXXXII group. The findings of this study would support references for monitoring the epidemiology and developing effective prevention strategies of the AcYL diseases.

12.
Front Plant Sci ; 14: 1207078, 2023.
Article in English | MEDLINE | ID: mdl-37915509

ABSTRACT

Thinopyrum intermedium (2n=6x=42, StStJrJrJvsJvs) is resistant or tolerant to biotic and abiotic stresses, making it suitable for developing perennial crops and forage. Through five cycles of selection, we developed 24 perennial wheatgrass lines, designated 19HSC-Q and 20HSC-Z, by crossing wheat-Th. intermedium partial amphiploids with Th. intermedium. The cold resistance, morphological performance, chromosome composition, and yield components of these perennial lines were investigated from 2019 to 2022. Six lines of 19HSC-Q had higher 1,000-kernel weight, grains per spike, and tiller number than Th. intermedium, as well as surviving -30°C in winter. Lines 19HSC-Q14, 19HSC-Q18, and 19HSC-Q20 had the best performances for grain number per spike and 1,000-kernel weight. The 20HSC-Z lines, 20HSC-Z1, 20HSC-Z2, and 20HSC-Z3, were able to survive in the cold winter in Harbin and had been grown for two years. Sequential multicolor GISH analysis revealed that the Jvs subgenome of Th. intermedium were divided into two karyotypes, three pairs of type-I Jvs chromosomes and four pairs of type-II Jvs chromosomes. Both Th. intermedium and the 24 advanced perennial wheatgrass lines had similar chromosome compositions, but the translocations among subgenome chromosomes were detected in some lines with prominent agronomic traits, such as 19HSC-Q11, 19HSC-Q14, 19HSC-Q18, 19HSC-Q20, and the three 20HSC-Z lines. The chromosome aberrations were distinguished into two types: the large fragment translocation with St-Jr, Jvs-St, Jr-IIJvs, and Jvs-Jr and the small fragment introgression of Jr-St, St-IJvs, and Jvs-Jr. These chromosomal variations can be used to further analyze the relationship between the subgenomes and phenotypes of Th. intermedium. The results of this study provide valuable materials for the next selection cycle of cold-resistant perennial wheatgrass.

13.
Clin Exp Med ; 23(8): 4809-4816, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37864077

ABSTRACT

Few biomarkers distinguish connective tissue disease-associated interstitial lung disease (CTD-ILD) from idiopathic pulmonary fibrosis (IPF). Latent transforming growth factor-ß binding protein-2 (LTBP2), a secreted extracellular matrix protein, is involved in pulmonary fibrosis. However, the role of LTBP2 in differentially diagnosing CTD-ILD and IPF is unclear. In this study, enzyme-linked immunosorbent assays quantified plasma LTBP2 concentrations in 200 individuals (35 healthy controls, 42 CTD patients without ILD, 89 CTD-ILD patients, and 34 IPF patients). CTD-ILD and IPF were further classified based on chest imaging pattern and pulmonary function test results. Plasma LTBP2 levels were significantly elevated in the IPF group compared with the CTD-ILD group. ROC analysis further suggested the possible value of LTBP2 in differentially diagnosing CTD-ILD and IPF. Additionally, CTD-ILD patients with progressive lung fibrosis had higher plasma LTBP2 concentrations than those who did not. Similarly, patients with IPF developing acute exacerbation showed higher plasma LTBP2 levels than those with stable IPF. This is the first study showing that LTBP2 was closely associated with the usual interstitial pneumonia (UIP) pattern in rheumatoid arthritis-associated ILD (RA-ILD). Moreover, the optimal cutoff values of LTBP2 for distinguishing IPF from CTD-UIP/RA-UIP were 33.75 and 38.33 ng/mL with an AUC of 0.682 and 0.681, respectively. Our findings suggest that plasma LTBP2 levels may differentially diagnose CTD-ILD and IPF, and assess their fibrotic activity. Additionally, clinical LTBP2 evaluation may be a great aid to identifying the presence of the UIP pattern in RA-ILD and to discriminating IPF from CTD-UIP, particularly RA-UIP.


Subject(s)
Connective Tissue Diseases , Idiopathic Pulmonary Fibrosis , Lung Diseases, Interstitial , Humans , Pilot Projects , Diagnosis, Differential , Lung Diseases, Interstitial/diagnosis , Idiopathic Pulmonary Fibrosis/complications , Idiopathic Pulmonary Fibrosis/diagnosis , Connective Tissue Diseases/complications , Connective Tissue Diseases/diagnosis , Biomarkers , Latent TGF-beta Binding Proteins
14.
Environ Res ; 238(Pt 1): 117141, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37717808

ABSTRACT

Tidal flats have important ecological functions and offer great economic value. Using field sampling, numerical simulation, and high-throughput sequencing, the ecological state of typical tidal flats along the eastern coast of China was investigated. The findings demonstrated that the area may be separated into subregions with notable differences in the features of microbial communities due to the variations in water quality and total pollutant discharge of seagoing rivers. With a ratio of 62%, the development of the microbial community revealed that homogenous selection predominated. In general, the formation of microbial communities follows deterministic processes, especially those of environmental selection. The wetland microbial communities are impacted by pollutants discharged into the sea from the Huaihe River and the Yangtze River. The Yangtze River's nitrogen pollutants affected the wetland zone, and denitrification dominated. The study established ecological patterns between the river and the sea and we offer suggestions for managing watersheds and safeguarding the ecology of coastal tidal flats.


Subject(s)
Environmental Pollutants , Microbiota , Estuaries , Rivers , Environmental Monitoring , China
15.
Front Med ; 17(6): 1170-1185, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37747585

ABSTRACT

OX40 is a costimulatory receptor that is expressed primarily on activated CD4+, CD8+, and regulatory T cells. The ligation of OX40 to its sole ligand OX40L potentiates T cell expansion, differentiation, and activation and also promotes dendritic cells to mature to enhance their cytokine production. Therefore, the use of agonistic anti-OX40 antibodies for cancer immunotherapy has gained great interest. However, most of the agonistic anti-OX40 antibodies in the clinic are OX40L-competitive and show limited efficacy. Here, we discovered that BGB-A445, a non-ligand-competitive agonistic anti-OX40 antibody currently under clinical investigation, induced optimal T cell activation without impairing dendritic cell function. In addition, BGB-A445 dose-dependently and significantly depleted regulatory T cells in vitro and in vivo via antibody-dependent cellular cytotoxicity. In the MC38 syngeneic model established in humanized OX40 knock-in mice, BGB-A445 demonstrated robust and dose-dependent antitumor efficacy, whereas the ligand-competitive anti-OX40 antibody showed antitumor efficacy characterized by a hook effect. Furthermore, BGB-A445 demonstrated a strong combination antitumor effect with an anti-PD-1 antibody. Taken together, our findings show that BGB-A445, which does not block OX40-OX40L interaction in contrast to clinical-stage anti-OX40 antibodies, shows superior immune-stimulating effects and antitumor efficacy and thus warrants further clinical investigation.


Subject(s)
Antineoplastic Agents , Receptors, Tumor Necrosis Factor , Mice , Animals , Receptors, Tumor Necrosis Factor/physiology , Receptors, OX40 , Membrane Glycoproteins , Ligands , Antibodies, Monoclonal/pharmacology , Antineoplastic Agents/pharmacology
16.
Waste Manag Res ; : 734242X231192766, 2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37641494

ABSTRACT

Prediction of municipal solid waste (MSW) generation plays an essential role in effective waste management. The main objectives of this study were to develop models for accurate prediction of MSW generation (MSWG) and analyze the influence of dominant variables on MSWG. To elevate the model's prediction accuracy, more than 50 municipal variables were considered original variables, which were selected from 12 categories. According to the screening results, the dominant variables are classified into four categories: urban greening, population size and residential density, regional economic development and resident income and expenditure. Among the seven machine learning methods, back propagation (BP) neural network has the best model evaluation effect. The R2 of the BP neural network model of Jiangsu, Zhejiang and Shandong provinces were 0.969, 0.941 and 0.971 respectively. The prediction accuracy of Shandong province (93.8%) was the best, followed by Jiangsu province (92.3%) and Zhejiang province (72.7%). The correlation between dominant variables and the MSWG was mined, suggesting that regional GDP and the total retail sales of consumer goods were the most important dominant variables affecting MSWG. Moreover, the MSWG might not absolutely associate with the population size and residential density. The method used in this study is a practical tool for policymakers on regional/local waste management and MSWG control.

17.
Plant Dis ; 2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37467130

ABSTRACT

The areca palm, Areca catechu L., family Arecaceae is an important herbal medicine which has potential for the treatment of parasitic diseases, digestive function disorders and depression (Peng et al. 2015). Yellow leaf disease (YLD), caused by phytoplasma, is a destructive disease of Areca catechu. In 1981, the YLD was first discovered in Tunchang, Hainan, China. According to the investigation in 2020, the occurrence area of YLD was 32 102.38 hm2 in Hainan, China, resulting in 50%-60% yield loss. Previous researchers based on 16S rDNA gene PCR amplification analysis showed that YLD in Hainan was caused by 16SrI group phytoplasma (Che et al. 2010). In August, 2022, yellow leaf symptoms were observed on middle and lower leaves of Areca catechu. Forty symptomatic plants and three asymptomatic samples were collected in Wenchang, Hainan, China (19°33'9″N, 110°48'5″E). Forty-three samples (0.1g each) were used to extract total DNA (TIANGEN plant genomic DNA extraction kit). Phytoplasma universal primers named P1/P7 (Schneider et al. 1995) and R16F2n/R16R2 (Gundersen and Lee 1996) for 16Sr DNA and primers named fTuf1/rTuf1 and fTufu/rTufu (Schneider et al. 1997) for tuf genes were used for amplifying phytoplasma sequences from isolated DNA samples by nested PCR. No fragment was amplified in asymptomatic plants and four out of forty symptomatic samples could amplify target fragment. R16F2n/R16R2 amplicons (1 248 bp) and fTufu/rTufu amplicons (845 bp) from four symptomatic Areca catechu samples were sequenced in BGI (https://genomics.cn/). The 16Sr DNA GenBank accession numbers of four positive strains (named HNWC5, HNDZ1, HNDZ3 and HNDZ6) were OQ586072, OQ586085, OQ586086, OQ586087, respectively and the tuf GenBank accession numbers were OQ595209, OQ595210, OQ595211, OQ595212, respectively. Sequence alignment showed that the 16S rDNA and tuf sequence of HNDZ1, HNDZ3 and HNDZ6 were 100% consistent. 16S rDNA of HNWC5 was 99.96% consistent with HNDZ1 and tuf of HNWC5 was 98.31% consistent with HNDZ1. Interestingly, blast search based on 16S rDNA gene of HNWC5 showed 100% sequence identity with that of 16SrII group phytoplasma such as 'Eclipta prostrata' phytoplasma strain Ep1(MH144204.1), 'Aeschynomene americana' phytoplasma isolate AA1(MH231157.1) and 'Acacia confusa' witches'-broom phytoplasma isolate HK6(ON408364.1). Blast search based on tuf gene of HNWC5 showed 98.7% sequence identity with that of bamboo witches'-broom phytoplasma (FJ853160.1) and 91.02% sequence identity with that of 'podocarpus nagi' fasciation phytoplasma (KR633146) and 90.78% sequence identity with that of 'Musa acuminata' elephantiasis disease phytoplasma (MF983708). The phylogenetic tree was constructed based on 16Sr DNA gene by MEGA 7.0 employing neighbor-joining (NJ) method with 1000 bootstrap value (Kumar et al. 2016). The result indicated that the HNWC5, HNDZ1, HNDZ3 and HNDZ6 phytoplasma strains clustered a subclade in 16SrII group. The virtual RFLP analysis based on the 16Sr DNA gene sequence was performed by the online phytoplasma classification tool iPhyClassifier (Zhao et al. 2009) using restriction endonucleases of AluI, BamHI, BfaI, BstUI, DraI, EcoRI, HaeIII, HhaI, HinfI, HpaI, HpaII, KpnI, Sau3AI, MseI, RsaI, SspI and TaqI. The result indicated that HNWC5 was most similar to the reference pattern of peanut witches'-broom phytoplasma (16SrII-A subgroup, GenBank accession: L33765) and the pattern similarity coefficient of HNWC5 is 1.00. However, the HpaII restriction endonuclease pattern of HNDZ1, HNDZ3 and HNDZ6 was different from L33765 and the similarity coefficient was 0.97, which indicated this strain may represent a new subgroup within the 16SrII group. To our knowledge, this is the first report of 16SrII group related phytoplasma associated with YLD on Areca catechu in China. Our study contributes to understanding the polymorphism of phytoplasma causing YLD and provides an important reference for pathogen specific detection.

18.
Plant Dis ; 2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37311230

ABSTRACT

Rubus cochinchinensis, an important traditional Chinese medicine in China is used to treat rheumatic arthralgia, bruises and lumbocrural pain (He et al.2005). In January 2022, yellow leaves of R. cochinchinensis were found in Tunchang City, Hainan Province, a tropical island in China. Chlorosis spread along the direction of vascular tissue while the leaf veins remain green (Fig. 1). In addition, the leaves were slightly shrunken and the growth vigor is poor (Fig. 1). By survey, we found the incidence of this disease was about 30%. Three etiolated samples and three healthy samples (0.1g each) were used to extract total DNA (TIANGEN plant genomic DNA extraction kit). Using nested PCR method, phytoplasma universal primers P1 / P7 (Schneider et al., 1995) and R16F2n / R16R2 (Lee et al. 1993) were used to amplified phytoplasma 16S rDNA gene. Primers rp F1 / R1 (Lee et al. 1998) and rp F2 / R2 (Martini et al. 2007) were used to amplified rp gene. 16S rDNA gene and rp gene fragments were amplified from three leaf etiolated samples, but not from healthy samples. The amplified fragments were cloned and sequenced, and the sequences were assembled by DNASTAR11. By sequence alignment, we found the obtained 16S rDNA and rp gene sequences of three leaf etiolated samples were same. The length of 16S rDNA fragment was 1237 bp (accession number: ON944105) and the length of rp gene fragment was 1212 bp (accession number: ON960069). The phytoplasma strain was named as 'R. cochinchinensis' yellows leaf phytoplasma (RcT), RcT-HN1 strain. The 16S rDNA gene sequence of RcT-HN1is 99.8% consistent with 16SrI-B subgroup members such as the 'Brassica napus' dwarf phytoplasma strain WH3 (MG599470.1), Chinaberry yellows phytoplasma strain LJM-1(KX683297.1) and Arecanut yellow leaf disease phytoplasma strain B165 (FJ694685.1). The rp gene sequence of RcT-HN1 is 100% consistent with rpI-B subgroup members such as the 'Salix tetradenia' witches'-broom phytoplasma strain YM-1 (KC117314.1) and Chinaberry witches'-broom phytoplasma strain Hainan (EU348781.1). The phylogenetic tree analysis, based on concatenated 16S rDNA-rp gene sequence of same group phytoplasma by MEGA 7.0 employing neighbor-joining (NJ) method with 1000 bootstrap value, were performed (Kumar et al., 2016). The results showed that RcT-HN1 phytoplasma strain formed a subclade in aster yellows group B subgroup (Fig. 2). The virtual RFLP analysis based on the 16S rRNA gene fragment of RcT-HN1 phytoplasma strain was performed by the interactive online phytoplasma classification tool iPhyClassifier (Zhao et al., 2009). The results showed that the phytoplasma strain was same as the reference pattern of the onion yellows phytoplasma of 16SrI-B (GenBank accession: AP006628), and the similarity coefficient was 1.00. This is the first report that 16SrI-B subgroup related phytoplasma infected R. cochinchinensis and caused yellows symptoms in China. The discovery of the disease is helpful to the study of the spread of phytoplasma-related diseases and protect R. cochinchinensis resources.

19.
Hum Vaccin Immunother ; 19(1): 2202127, 2023 12 31.
Article in English | MEDLINE | ID: mdl-37128699

ABSTRACT

DNA vaccines containing only antigenic components have limited efficacy and may fail to induce effective immune responses. Consequently, adjuvant molecules are often added to enhance immunogenicity. In this study, we generated a tumor vaccine using a plasmid encoding NMM (NY-ESO-1/MAGE-A3/MUC1) target antigens and immune-associated molecules. The products of the vaccine were analyzed in 293 T cells by western blotting, flow cytometry, and meso-scale discovery electrochemiluminescence. To assess the immunogenicity obtained, C57BL/6 mice were immunized using the DNA vaccine. The results revealed that following immunization, this DNA vaccine induced cellular immune responses in C57BL/6 mice, as evaluated by the release of IFN-γ, and we also detected increases in the percentages of nonspecific lymphocytes, as well as those of antigen-specific T cells. Furthermore, immunization with the pNMM vaccine was found to significantly inhibit tumor growth and prolonged the survival of mice with B16-NMM+-tumors. Our data revealed that pNMM DNA vaccines not only confer enhanced immunity against tumors but also provide a potentially novel approach for vaccine design. Moreover, our findings provide a basis for further studies on vaccine pharmacodynamics and pharmacology, and lay a solid foundation for clinical application.


Subject(s)
Cancer Vaccines , Neoplasms , Vaccines, DNA , Mice , Animals , Mice, Inbred C57BL , Antigens, Neoplasm , Adjuvants, Immunologic , Immunity, Cellular
20.
Food Chem Toxicol ; 176: 113810, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37146711

ABSTRACT

Hepatocellular carcinoma (HCC) is caused by genetic and epigenetic alterations, as well as abnormal lifestyle and dietary habits, including contaminated food intake. Benzo(a)pyrene (B[a]P), derived from deep-fried meats, is regarded as the main dietary factor for tumorigenesis in epidemiological investigations. Although various studies have illustrated the adverse effects of B[a]P in malignancy through cell and animal models, the correlation between B[a]P exposure and clinical data remain to be explored. In the present study, we analyzed and identified novel B[a]P-associated circular RNA (circRNA) from microarray databases of liver tumor cells and HCC patient samples. Considering that circRNA regulates mRNA as a miRNA sponge, molecular circRNA-miRNA-mRNA interactions based on the stimulation of B[a]P exposure were predicted and established. Furthermore, up-regulated circ_0084615 in B[a]P-treated tumor cells was verified as a miRNA sponge via fluorescence in situ hybridization (FISH) assays, and the repression between circ_0084615 and target miR-451a exhibited a contrasting effect on hepatocarcinogenesis. Therefore, we performed integrated bioinformatics analysis and molecular experiments to establish the circ_0084615/miR-451a/MEF2D pathway, which provided a better understanding of the adverse effects of fried food preference on human health.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , MicroRNAs , Animals , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , RNA, Circular/genetics , Benzo(a)pyrene/toxicity , In Situ Hybridization, Fluorescence , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , MicroRNAs/metabolism , Carcinogenesis/genetics , RNA, Messenger , Cell Line, Tumor , Cell Proliferation , MEF2 Transcription Factors/genetics , MEF2 Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...