Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Metabolism ; 131: 155200, 2022 06.
Article in English | MEDLINE | ID: mdl-35405150

ABSTRACT

BACKGROUND: Schisandrin B (Sch B), which inhibits hepatic steatosis caused by non-alcoholic fatty liver disease (NAFLD), is one of the most active dibenzocyclooctadienes isolated from Schisandra chinensis (Turcz.) Baill with various pharmacological activities. In this study, the role of Sch B-induced autophagy in lipid-lowering activities of Sch B was examined and the underlying mechanisms were elucidated. METHODS: Free fatty acid (FFA)-stimulated HepG2 cells and mouse primary hepatocytes (MPHs) and high-fat diet (HFD)-fed mice were used as NAFLD models. The role of Sch B-induced autophagy in lipid-lowering effects of Sch B was assessed using ATG5/TFEB-deficient cells and 3-methyladenine (3-MA)-treated hepatocytes and mice. RESULTS: Sch B simultaneously active autophagy through AMPK/mTOR pathway and decreased the number of lipid droplets in FFA-treated HepG2 cells and MPHs. Additionally, siATG5/siTFEB transfection or 3-MA treatment mitigated Sch B-induced autophagy and activation of fatty acid oxidation (FAO) and ketogenesis in FFA-treated HepG2 cells and MPHs. Sch B markedly decreased hepatic lipid content and activated the autophagy through AMPK/mTOR pathway in HFD-fed mice. However, the activities of Sch B were suppressed upon 3-MA treatment. Sch B upregulated the expression of key enzymes involved in FAO and ketogenesis, which was mitigated upon 3-MA treatment. Moreover, changes in hepatic lipid components and amino acids may be related to the Sch B-induced autophagy pathway. CONCLUSION: These results suggested that Sch B inhibited hepatic steatosis and promoted FAO by activation of autophagy through AMPK/mTOR pathway. Our study provides novel insights into the hepatic lipophagic activity of Sch B and its potential application in the management of NAFLD.


Subject(s)
AMP-Activated Protein Kinases , Non-alcoholic Fatty Liver Disease , AMP-Activated Protein Kinases/metabolism , Animals , Autophagy , Cyclooctanes , Diet, High-Fat , Fatty Acids, Nonesterified/metabolism , Hepatocytes/metabolism , Ketone Bodies/metabolism , Lignans , Lipid Metabolism , Liver/metabolism , Mice , Non-alcoholic Fatty Liver Disease/metabolism , Polycyclic Compounds , Signal Transduction , TOR Serine-Threonine Kinases/metabolism
2.
Chin Med ; 17(1): 27, 2022 Feb 22.
Article in English | MEDLINE | ID: mdl-35193642

ABSTRACT

BACKGROUND: Tea trees originated in southwest China 60 million or 70 million years ago. Written records show that Chinese ancestors had begun drinking tea over 3000 years ago. Nowadays, with the aging of populations worldwide and more people suffering from non-communicable diseases or poor health, tea beverages have become an inexpensive and fine complementary and alternative medicine (CAM) therapy. At present, there are 3 billion people who like to drink tea in the world, but few of them actually understand tea, especially on its development process and the spiritual and cultural connotations. METHODS: We searched PubMed, Google Scholar, Web of Science, CNKI, and other relevant platforms with the key word "tea", and reviewed and analyzed tea-related literatures and pictures in the past 40 years about tea's history, culture, customs, experimental studies, and markets. RESULTS: China is the hometown of tea, tea trees, tea drinking, and tea culture. China has the oldest wild and planted tea trees in the world, fossil of a tea leaf from 35,400,000 years ago, and abundant tea-related literatures and art works. Moreover, tea may be the first Chinese herbal medicine (CHM) used by Chinese people in ancient times. Tea drinking has many benefits to our physical health via its antioxidant, anti-inflammatory, immuno-regulatory, anticancer, cardiovascular-protective, anti-diabetic, and anti-obesity activities. At the moment, COVID-19 is wreaking havoc across the globe and causing severe damages to people's health and lives. Tea has anti-COVID-19 functions via the enhancement of the innate immune response and inhibition of viral growth. Besides, drinking tea can allow people to acquire a peaceful, relaxed, refreshed and cheerful enjoyment, and even longevity. According to the meridian theory of traditional Chinese medicine, different kinds of tea can activate different meridian systems in the human body. At present, black tea (fermented tea) and green tea (non-fermented tea) are the most popular in the world. Black tea accounts for over 90% of all teas sold in western countries. The world's top-grade black teas include Qi Men black in China, Darjeeling and Assam black tea in India, and Uva black tea in Sri Lanka. However, all top ten famous green teas in the world are produced in China, and Xi Hu Long Jing tea is the most famous among all green teas. More than 700 different kinds of components and 27 mineral elements can be found in tea. Tea polyphenols and theaflavin/thearubigins are considered to be the major bioactive components of black tea and green tea, respectively. Overly strong or overheated tea liquid should be avoided when drinking tea. CONCLUSIONS: Today, CAM provides an array of treatment modalities for the health promotion in both developed and developing countries all over the world. Tea drinking, a simple herb-based CAM therapy, has become a popular man-made non-alcoholic beverage widely consumed worldwide, and it can improve the growth of economy as well. Tea can improve our physical and mental health and promote the harmonious development of society through its chemical and cultural elements.

3.
Article in English | MEDLINE | ID: mdl-33688367

ABSTRACT

Schisandrae Fructus (SF), the fruit of Schisandra chinensis (Turcz.) Baillon, has been used for the treatment of liver injury and metabolism-related disorders in China. The objective of this study was to investigate the effects of supplementation with ethanol extract of SF seed (EtSF-S) on serum/hepatic lipid and glucose levels as well as fecal total cholesterol (TC) contents in mice fed a normal diet (ND) or high-fat/fructose diet (HFFD) containing 15% lard oil and 15% fructose. Female ICR mice (18-20 g in body weight) were fed with ND or HFFD for 3 months, and then EtSF-S was added to both chow diets at increasing concentrations of 1, 5, and 10% (w/w). Thirty days later, serum and hepatic lipids, including TC, triglyceride (TG), high-density lipoprotein (HDL), low-density lipoprotein (LDL), and glucose, were measured. Dietary supplementation with EtSF-S reduced hepatic TC (36 and 18%) and TG levels (38 and 28%) and increased serum HDL/LDL ratio (16 and 26%) in both ND- and HFFD-fed mice, respectively. Moreover, supplementation with EtSF-S elevated serum HDL (31%) in HFFD-fed mice and reduced serum LDL (27%) in ND-fed mice. EtSF-S treatment reduced fat mass (40%) in ND-fed mice and increased fecal TC contents (33%) in HFFD-fed mice. EtSF-S supplementation decreased hepatic glucose contents (29%) in both ND- and HFFD-fed mice. However, diet supplemented with EtSF-S elevated serum TG levels (up to 123%) and hepatic size (28%), but more importantly, suppressed the body weight gain (approximately 130%) in mice fed with HFFD. These findings suggested that dietary supplementation with EtSF-S as natural herbal function food may be a useful strategy for the treatment of patients with fatty liver disease or overweight without a high intake of sugar and fat.

SELECTION OF CITATIONS
SEARCH DETAIL
...