Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Aging (Albany NY) ; 13(4): 5553-5570, 2021 02 11.
Article in English | MEDLINE | ID: mdl-33589578

ABSTRACT

Exogenous factors influence embryo development. Enniatin B1 (EB1), one emerging mycotoxin of Fusarium fungi, can cause damage to cells and mouse blastocysts. However, the toxicity of EB1 on porcine embryo development and whether melatonin can eliminate the detrimental effects of EB1 on embryos remain unclear. Here, this work demonstrated that EB1 significantly decreased the cleavage and blastocyst rates and blastocyst cell number of embryos in a dose and time dependent manner. Further study displayed that EB1 obviously destroyed nuclear remodeling dynamics. Importantly, EB1 triggered embryo apoptosis through downregulating the expression of Sod1,Gpx4, Cat and Bcl2l1 while upregulating the transcription of Bax and Caspase3. Moreover, EB1 significantly disrupted the transcription of Dnmt1, Dnmt3a, Tet1 and Tet3, further leading to incomplete DNA demethylation of CenRep, Oct4, Nanog and Sox2, thus, the expression of Eif1a, Oct4, Nanog and Sox2 remarkably decreased. Whereas EB1-exposed embryos were treated with melatonin, these disorders were obviously ameliorated, and the development ability of embryos was also rescued. In conclusion, EB1 exerted detrimental effects on porcine early embryos, while melatonin effectively rescued EB1-mediated defects in embryos. This work provides a novel insight into the improvement of embryo quality and the promotion of human and animal reproduction.


Subject(s)
Antioxidants/therapeutic use , Depsipeptides/toxicity , Embryo, Mammalian/drug effects , Melatonin/therapeutic use , Animals , Antioxidants/pharmacology , Apoptosis/drug effects , DNA Methylation/drug effects , Embryonic Development/drug effects , Melatonin/pharmacology , Swine
2.
Res Vet Sci ; 132: 229-236, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32619801

ABSTRACT

Apoptosis and incomplete DNA methylation reprogramming in cloned embryos reduce cloning efficiency. 5-aza-2'-deoxycytidine (5-aza-dC) is proven to regulate apoptosis and DNA methylation reprogramming, however, the treatment method and potential role of 5-aza-dC during cloned embryo development are still not well studied. This study displayed that treating donor cells with 5-aza-dC (AN group) significantly reduced the blastocyst rate, while treating cloned embryos (NA group) or both donor cells and cloned embryos (ANA group) significantly promoted the blastocyst formation, and the ANA group was the best treatment of 5-aza-dC to enhance the development of cloned embryos. Then, compared with the NT group, the ANA group showed the significantly enhanced nuclear remodeling. The apoptotic cell numbers and rates of blastocysts were significantly reduced, and the expression levels of significantly upregulated anti-apoptosis gene Bcl2l1 and downregulated pro-apoptosis genes Bax, P53 and Caspase3 were observed in the ANA group. Further study demonstrated that the transcription levels of DNA methylation reprogramming genes Dnmt1, Dnmt3a, Tet1 and Tet3 were significantly upregulated, and, significant genomic DNA remethylation, DNA demethylation of pluripotency gene Oct4, and DNA remethylation of tissue specific gene Thy1 were observed at the blastocyst stage in the ANA group. Embryo development related genes including Igf2, H19, Oct4, Nanog, Sox2, Eif1a, Cdx2 and ATP1b1 were significantly upregulated, and Thy1 and Col5a2 were remarkably silenced at the 4-cell and blastocyst stages in the ANA group. In conclusion, the best 5-aza-dC treatment enhanced the development of cloned embryos by inhibiting apoptosis and improving DNA methylation reprogramming.


Subject(s)
Apoptosis/drug effects , Cellular Reprogramming/drug effects , Cloning, Organism/veterinary , Decitabine/pharmacology , Swine/embryology , Animals , Azacitidine/pharmacology , Blastocyst/metabolism , Cloning, Organism/methods , DNA Methylation/drug effects , Embryonic Development/drug effects , Gene Expression Regulation, Developmental/drug effects , Insulin-Like Growth Factor II/genetics , Insulin-Like Growth Factor II/metabolism , Nuclear Transfer Techniques/veterinary
3.
Cell Reprogram ; 22(3): 156-166, 2020 06.
Article in English | MEDLINE | ID: mdl-32207988

ABSTRACT

Incomplete DNA methylation reprogramming in cloned embryos leads to poor cloning efficiency. Melatonin has been proven to improve the development of cloned embryos, however, the role of melatonin during somatic cell nuclear transfer remains unclear. This work demonstrated that 10-7 M melatonin significantly enhanced the developmental progress, reduced the arrested rate before zygotic genome activation, and upregulated the blastocyst rate of cloned embryos. Melatonin also promoted the pseudo-pronucleus formation, increased blastocyst cell number, and reduced embryo apoptosis through upregulating the expression of antiapoptosis factors while downregulating the transcription of proapoptosis genes. Further study displayed that DNA methylation reprogramming related genes were greatly improved in cloned embryos when treated with melatonin; then, melatonin effectively promoted genomic DNA demethylation and DNA remethylation, DNA demethylation of pluripotency related gene Oct4, DNA methylation maintenance of imprinted gene H19/Igf2, and DNA remethylation of tissue-specific gene Thy1 in cloned embryos. Thus, zygotic genome activation related gene Eif1a, pluripotency related genes Oct4, Nanog, and Sox2, imprinted genes Igf2 and H19, and blastocyst quality related genes Cdx2 and ATP1b1 were remarkably upregulated, and tissue-specific genes Thy1 and Col5a2 were considerably silenced. In conclusion, melatonin enhanced the development of cloned embryos by ameliorating DNA methylation reprogramming. This work reveals that melatonin can regulate DNA methylation reprogramming and provides a novel insight to improve cloning efficiency.


Subject(s)
Cellular Reprogramming/drug effects , DNA Methylation/drug effects , Epigenesis, Genetic/drug effects , Melatonin/pharmacology , Swine/embryology , Swine/genetics , Animals , Blastocyst/metabolism , Cloning, Organism/methods , Cloning, Organism/veterinary , Embryo Culture Techniques/veterinary , Embryonic Development/drug effects , Gene Expression Regulation, Developmental/drug effects , Nuclear Transfer Techniques
4.
Anat Sci Educ ; 11(1): 73-80, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28914982

ABSTRACT

Access to adequate anatomical specimens can be an important aspect in learning the anatomy of domestic animals. In this study, the authors utilized a structured light scanner and fused deposition modeling (FDM) printer to produce highly accurate animal skeletal models. First, various components of the bovine skeleton, including the femur, the fifth rib, and the sixth cervical (C6) vertebra were used to produce digital models. These were then used to produce 1:1 scale physical models with the FDM printer. The anatomical features of the digital models and three-dimensional (3D) printed models were then compared with those of the original skeletal specimens. The results of this study demonstrated that both digital and physical scale models of animal skeletal components could be rapidly produced using 3D printing technology. In terms of accuracy between models and original specimens, the standard deviations of the femur and the fifth rib measurements were 0.0351 and 0.0572, respectively. All of the features except the nutrient foramina on the original bone specimens could be identified in the digital and 3D printed models. Moreover, the 3D printed models could serve as a viable alternative to original bone specimens when used in anatomy education, as determined from student surveys. This study demonstrated an important example of reproducing bone models to be used in anatomy education and veterinary clinical training. Anat Sci Educ 11: 73-80. © 2017 American Association of Anatomists.


Subject(s)
Anatomy/education , Animal Use Alternatives/methods , Education, Veterinary/methods , Imaging, Three-Dimensional/methods , Models, Anatomic , Animals , Animals, Domestic/anatomy & histology , Bone and Bones/anatomy & histology , Cattle , Humans , Printing, Three-Dimensional , Students, Medical/statistics & numerical data , Surveys and Questionnaires
5.
Oncotarget ; 8(42): 72363-72374, 2017 Sep 22.
Article in English | MEDLINE | ID: mdl-29069793

ABSTRACT

Imprinting disorder during somatic cell nuclear transfer usually leads to the abnormality of cloned animals and low cloning efficiency. However, little is known about the role of donor cell imprinting in the development of cloned embryos. Here, we demonstrated that the imprinting (H19/Igf2) in porcine fetus fibroblasts derived from the morphologically abnormal cloned fetuses (the abnormal imprinting group) was more hypomethylated, and accordingly, significantly higher H19 transcription and lower Igf2 expression occurred in comparison with those in fibroblasts derived from morphologically normal cloned fetuses (the normal imprinting group) or donor fetus fibroblasts (the control group). When these fibroblasts were used as donor cells, the abnormal imprinting group displayed an even lower imprinting methylation level, in correspondence to the significantly downregulated expression of Dnmt1, Dnmt3a and Zfp57, and a markedly reduced blastocyst rate, while the normal imprinting group took on the similar patterns of imprinting, gene expression and embryo development to the control group. When 5-aza-dC was applied to reduce the fibroblasts imprinting methylation level in the normal imprinting group, cloned embryos displayed the more severely impaired imprinting and significantly lower blastocyst rate. While the upregulated H19 transcription in the abnormal imprinting group was knocked down, the imprinting statuses were partly rescued, and the cleavage and blastocyst rates significantly increased in cloned embryos. In all, donor cell imprinting disorder reduced the developmental efficiency of cloned embryos. This work provides a new insight into understanding the molecular mechanism of donor cells regulating the cloned embryo development.

6.
Oncotarget ; 8(21): 34980-34991, 2017 May 23.
Article in English | MEDLINE | ID: mdl-28380421

ABSTRACT

Low development of somatic cell nuclear transfer embryos could be due to the incomplete DNA methylation reprogramming, and Dnmt1s existing in donor cells may be one cause of this disrupted DNA methylation reprogramming. However, the reprogramming pattern of Dnmt1s and its effect on DNA methylation reprogramming in cloned embryos remain poorly understood. Here, we displayed that along with the significantly higher Dnmt1 expression at the zygotic gene activation stage of cloned embryos, genomic methylation level was markedly upregulated, and the arrested rate was significantly higher compared with their in vitro fertilization counterparts. Then, we demonstrated that Dnmt1s, not Dnmt1o, methylation and expression levels in cloned embryos were significantly higher from the 1-cell to 4-cell stage but markedly lower at the blastocyst stage. When Dnmt1s in donor cells was appropriately removed, more cloned embryos passed through the zygotic gene activation stage and the blastocyst rate significantly increased. Furthermore, Dnmt1s knockdown significantly improved itself and genomic methylation reconstruction in cloned embryos. Finally, we found that Dnmt1s removal significantly promoted the demethylation and expression of pluripotent genes in cloned embryos. Taken together, these data suggest that Dnmt1s in donor cells is a critical barrier to somatic cell nuclear transfer mediated DNA methylation reprogramming, impairing the development of cloned embryos.


Subject(s)
DNA (Cytosine-5-)-Methyltransferase 1/metabolism , DNA Methylation , Nuclear Transfer Techniques , Animals , Cellular Reprogramming , Cloning, Organism , DNA (Cytosine-5-)-Methyltransferase 1/genetics , Epigenesis, Genetic , Female , Gene Expression Regulation, Developmental , Swine , Transcriptional Activation
7.
PLoS One ; 10(6): e0129803, 2015.
Article in English | MEDLINE | ID: mdl-26068219

ABSTRACT

Incomplete DNA methylation reprogramming in cloned embryos leads to poor cloning efficiency. Epigenetic modification agents can improve genomic methylation reprogramming and the development of cloned embryos, however, the effect of epigenetic modification agents on gene-specific methylation reprogramming remains poorly studied. Here, we investigated DNA methylation reprogramming of pluripotency (Oct4) and tissue specific (Thy1) genes during early embryo development in pigs. In this study, we found that compared with in vitro fertilized counterparts, cloned embryos displayed the disrupted patterns of Oct4 demethylation and Thy1 remethylation. When 5-aza-2'-deoxycytidine (5-aza-dC) or trichostatin A (TSA) enhanced the development of cloned embryos, the transcripts of DNA methyltransferases (Dnmt1 and Dnmt3a), histone acetyltransferase 1 (Hat1) and histone deacetylase 1 (Hdac1) and the methylation and expression patterns of Oct4 and Thy1 became similar to those detected in in vitro fertilized counterparts. Further studies showed that Dnmt1 knockdown in cloned embryos enhanced the methylation reprogramming of Oct4 and Thy1 and promoted the activation of Oct4 and the silence of Thy1. In conclusion, our results demonstrated that cloned embryos displayed incomplete gene-specific methylation reprogramming and disrupted expression patterns of pluripotency and tissue specific genes, and epigenetic modification agents improved gene-specific methylation reprogramming and expression pattern by regulating epigenetic modification related genes. This work would have important implications in improving cloning efficiency.


Subject(s)
Azacitidine/analogs & derivatives , Cellular Reprogramming/drug effects , DNA Methylation/drug effects , Epigenesis, Genetic/drug effects , Hydroxamic Acids/pharmacology , Swine/embryology , Swine/genetics , Animals , Azacitidine/pharmacology , Cells, Cultured , Decitabine , Embryo Culture Techniques , Embryonic Development/drug effects , Enzyme Inhibitors/pharmacology , Fertilization in Vitro , Gene Expression Regulation, Developmental/drug effects , Histone Deacetylase Inhibitors/pharmacology , Nuclear Transfer Techniques , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction
8.
Asian J Androl ; 10(2): 219-26, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18286210

ABSTRACT

AIM: To determine the possible roles of the t-complex testis expressed gene 5 (Tctex5) on sperm functions, the full-length sequence of mRNA was studied and compared in the testis between the normal wild-type and the sterile t-haplotype mutant mice. METHODS: We applied rapid amplification of cDNA ends, Northern blot and reverse transcription polymerase chain reaction to analyze the full length of Tctex5 mRNAs isolated from testes of the wild-type and the t-haplotype mice. Reverse transcription polymerase chain reaction was used to semi-quantitatively compare expression of Tctex5 transcripts in the 16 tissues and 9.5 day stage embryos in the wild-type mice. E-translation was applied to estimate the amino acid sequences. RESULTS: One long and one short transcript of Tctex5 mRNA were discovered in mouse testis of wild-type (Tctex5(long-+) and Tctex5(short-+)) and t-haplotype (Tctex5(long-t) and Tctex5(short-t)) mice, respectively. Being enhanced only in the testis, Tctex5(long-t) had 17 point mutations and one 15-bp-deletion in the exon 1 region, comparing with the Tctex5(long-+), whereas the Tctex5(short-t) was similar to the Tctex5(short-+). The short isoforms of Tctex5 mRNAs in the two models encoded exactly the same peptides, but the long isoforms did not. The estimated peptide encoded by Tctex5(long-t) had significant mutations on putative sites of phosphorylation and PP1 binding. CONCLUSION: We established that mutations that occur in the Tctex5 long transcript of the t-haplotype mice are important for normal sperm function, whereas the short transcript of Tctex5 might have a conserved function among different tissues.


Subject(s)
Microtubule-Associated Proteins/chemistry , Microtubule-Associated Proteins/genetics , Nuclear Proteins/chemistry , Nuclear Proteins/genetics , Spermatozoa/metabolism , Testis/metabolism , Animals , Gene Expression , Haplotypes , Infertility, Male , Male , Mice , Mutation , Protein Phosphatase 1 , Sequence Analysis, Protein , Ubiquitin-Protein Ligases , t-Complex Genome Region
9.
Sci China C Life Sci ; 50(2): 170-7, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17447023

ABSTRACT

The present study aims to identify the distribution of alpha-D-mannose residues on zona pellucida (ZP) and their role(s) in fertilization in pigs. In experiment 1, in vitro matured pig oocytes were freed from cumulus cells and treated with fluorescein isothiocyanate-labelled Lens culinaris (FITC-LCA), a D-mannose specific binding lectin. After 30 min of treatment, LCA bound evenly throughout the ZP with strong fluorescence. In experiment 2, when LCA-treated oocytes were used for in vitro fertilization, the number of sperm bound to ZP was significantly decreased, and sperm penetration was almost completely blocked. In experiment 3, polysaccharide mannan was added to the in vitro fertilization medium as a competitive inhibitor. Both the number of sperm bound to ZP and the rate of fertilized oocytes were significantly reduced in the mannan-treated group compared with the control group. In experiment 4, spermatozoa were incubated with mannan in vitro. The number of acrosome-reacted spermatozoa was evidently increased in a time-dependent manner during the incubation. These results suggest that alpha-D-mannose residues presenting on pig ZP might be an important component of sperm receptor and might induce sperm acrosome reaction and thus facilitate the sperm penetration into the ZP.


Subject(s)
Mannose/analysis , Oocytes/physiology , Zona Pellucida/physiology , Animals , Female , Fertilization , Fertilization in Vitro , Male , Sperm-Ovum Interactions , Spermatozoa/physiology , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...