Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Publication year range
1.
Yi Chuan ; 41(7): 653-661, 2019 Jul 20.
Article in Chinese | MEDLINE | ID: mdl-31307974

ABSTRACT

RNA interference is a gene silencing phenomenon mediated by short double-stranded RNAs, which has become a widely used research technology for reverse genetics. In order to make students understand the technology better, the students were required to select target genes, to design small interfering RNAs (siRNAs) and primers, and then to test the effect of gene silencing mediated by siRNAs. Taking the fifth group in 2018 as an example, Mus musculus acyl-CoA synthetase long-chain family member 1 (Acsl1) was selected as the target gene, two pairs of siRNAs targeting Acsl1 mRNA were designed and transfected into 3T3-L1 by electroporation, then the total RNAs were extracted and synthesized to cDNA, and the expression levels of mRNAs were finally tested by relative quantitative PCR. The results showed that both pairs of siRNAs had more than 60% silencing effects. In the past three years, about 83% of the students completed all the experiments successfully and screened out at least a pair of effective siRNA. This teaching practice for undergraduates enhances students' understanding of RNA interference principle and technology, and exercises students' lab experience and scientific research ability.


Subject(s)
Genetics/education , RNA Interference , Students , Teaching , Animals , Coenzyme A Ligases , Gene Expression , Humans , Mice , RNA, Small Interfering
2.
Yi Chuan ; 39(8): 763-768, 2017 Aug 20.
Article in English | MEDLINE | ID: mdl-28903903

ABSTRACT

Caenorhabditis elegans is one of the most important model organisms in the study of biology. It is ideal for laboratory teaching due to its short life cycle and low cost. It enriches the teaching content and can motivate students' interest of learning. In this article, we have shown cased C. elegans for the observation of life cycle and mating, as well as the investigation of single nucleotide polymorphism (SNP) and RNA interfere. In addition, we also discuss the details of the experimental design, basic requirement, preparations and related information. We conclude that C. elegans can be used as the experimental materials for teaching college laboratory courses, such as genetic, cell biology, model biology and developmental biology.


Subject(s)
Caenorhabditis elegans/genetics , Animals , Genetics , Laboratories , Learning , Research Design , Students , Teaching
3.
Zhonghua Yi Xue Za Zhi ; 93(19): 1499-502, 2013 May 21.
Article in Chinese | MEDLINE | ID: mdl-24029577

ABSTRACT

OBJECTIVE: To explore the inhibitory effects of human umbilical cord-derived mesenchymal stem cells (hUCMSC) on the proliferation of peripheral blood mononuclear cells (PBMC) from spondyloarthritis (SpA) patients. METHODS: A total of 12 SpA patients at Chinese PLA General Hospital were recruited from May 2012 to October 2012. Information on demographic characteristics, disease and functional activity was collected. Isolated PBMC were stimulated by phytohemagglutinin (PHA, 1 µg/ml) in the presence or absence of hUCMSC.The proliferation of hUCMSC was suppressed by irradiation with Co60 (30 Gy) before co-culturing with PBMC. The proliferation of PBMC was determined by Cell Counting Kit-8 (CCK-8). Cell cycle profiles of PBMC were analyzed by flow cytometry. The association of inhibitory effect of hUCMSC with the disease and functional activity of SpA patients was examined. RESULTS: After coculturing with hUCMSC by cell-to-cell contact for 5 days, the proliferation of PBMC stimulated by PHA (1 µg/ml) was significantly inhibited by hUCMSC in a dose-dependent manner.The inhibition rate of the proliferation of PBMC cocultured with hUCMSC by cell-to-cell contact was higher than that by Transwell culture (57% ± 17% vs 32% ± 12%, P < 0.01). Compared to PBMC cultured alone, a larger number of PBMC cocultured with hUCMSC were in phase G1 (86% ± 3% vs 68% ± 5%, P < 0.01) while a lower number of cells in phases S and G2 (8% ± 3% vs 26% ± 5%, P < 0.01). No association was found between the inhibitory effect of hUCMSC and the disease and functional activity. CONCLUSION: The proliferation of PBMC from SpA patients may be inhibited by hUCMSC. And hUCMSC have therapeutic potentials for SpA patients.


Subject(s)
Cell Proliferation , Leukocytes, Mononuclear/cytology , Mesenchymal Stem Cells/cytology , Spondylarthritis/pathology , Adult , Cell Cycle , Cells, Cultured , Coculture Techniques , Female , Humans , Male , Umbilical Cord/cytology
4.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 21(2): 455-9, 2013 Apr.
Article in Chinese | MEDLINE | ID: mdl-23628053

ABSTRACT

In this study, the inhibitory effect of human umbilical cord-derived mesenchymal stem cells (hUCMSC) on interleukin-17 (IL-17) production in peripheral blood T cells from patients with spondyloarthritis (SpA) were investigated, in order to explore the therapeutic potential of hUCMSC in the SpA. Peripheral blood mononuclear cells (PBMNC) were isolated from patients with SpA (n = 12) and healthy subjects (n = 6). PBMNC were cultured in vitro with hUCMSC or alone. The expression of IL-17 in CD4(+) T cells or γ/δ T cells were determined in each subject group by flow cytometry. IL-17 concentrations in PBMNC culture supernatants were measured by ELISA. The results indicated that the proportion of IL-17-producing CD4(+) T cells and IL-17-producing γ/δ T cells of SpA patients were 4.5 folds and 5 folds of healthy controls [CD3(+)CD4(+)IL-17(+) cells (3.42 ± 0.82)% vs (0.75 ± 0.25)%, P < 0.01; CD3(+)γδTCR(+)IL-17(+) cells (0.30 ± 0.10)% vs (0.06 ± 0.02)%, P < 0.01]. After co-culture of PBMNC in patients with hUCMSC, the increased proportions of CD3(+)CD4(+)IL-17(+) cells and CD3(+)γδTCR(+)IL-17(+) cells in SpA patients were inhibited significantly by hUCMSC [CD3(+)CD4(+)IL-17(+) cells (3.42 ± 0.82)% vs (1.81 ± 0.59)% (P < 0.01); CD3(+)γδTCR(+)IL-17(+) cells (0.30 ± 0.10)% vs (0.16 ± 0.06)% (P < 0.01]. In response to phytohemagglutinin (PHA, 1 µg/ml), PBMNC from SpA patients secreted more IL-17 than that from healthy control [(573.95 ± 171.68) pg/ml vs (115.53 ± 40.41) pg/ml (P < 0.01)]. In the presence of hUCMSC, PBMNC of SpA patients produced less amount of IL-17 [(573.95 ± 171.68) pg/ml vs (443.20 ± 147.94) pg/ml, (P < 0.01)]. It is concluded that the IL-17 production in peripheral blood T cells from SpA patients can be inhibited by hUCMSC, which have therapeutic potential for SpA.


Subject(s)
Interleukin-17/metabolism , Mesenchymal Stem Cells , Spondylarthritis/blood , T-Lymphocytes/metabolism , Humans , Leukocytes, Mononuclear/cytology , Lymphocyte Count , Spondylarthritis/metabolism , Spondylarthritis/therapy , Umbilical Cord/cytology
5.
J Physiol Sci ; 62(1): 29-43, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22125186

ABSTRACT

Heat stress will stimulate cells of living organisms to generate heat shock proteins (Hsps). In the mouse liver, impacts of heat stress on hepatocyte proliferation, apoptosis and metabolism have not been studied systematically at different temperatures. In this research, the test mice were heated to 40, 42, 44 and 46°C, respectively, for 20 min and recovered at room temperature for 8 h in normal feeding conditions; the control animals were kept at room temperature without heat stress. The expression levels of Hsp70, Pcna, Bax, Bcl2, cytochrome P450 1A2 (CYP1A2), CYP2E1 and analog of CYP3A4 (not reported in mouse before), the parameters reflecting stress strength, cell proliferation, apoptosis and metabolism, were detected by western blotting, immunohistochemistry and semi-quantitative RT-PCR in test and control mice. Haematoxylin-eosin (H&E) staining and TUNEL analysis were further used to study the impacts of heat stress at different temperatures on hepatocellular necrosis and apoptosis. Serum AST and ALT levels, the markers of liver injury, were measured after heat stress at different temperatures. The data show that Hsp70 expression was significantly increased when temperature increased (P < 0.05). At lower temperatures (40 or 42°C), expression of Pcna, CYP1A2 and analog of CYP3A4 were considerably increased (P < 0.05) while hepatocyte necrosis and apoptosis were not induced (P > 0.05). At higher temperatures (44 or 46°C), expression of Pcna was decreased while hepatocyte necrosis and apoptosis were induced (P < 0.05). Expressions of CYP1A2 and analog of CYP3A4 were decreased especially at 46°C (P < 0.05). Expression of CYP2E1 could not be detected to increase at 40°C but was at high levels at 42, 44 and 46°C (P < 0.05). Expressions of AST and ALT were not different between the test mice and control mice at 40°C while they were significantly higher in the test mice than those in the control mice at 42 (P < 0.05), 44 and 46°C (P < 0.01). In conclusion, heat stress at lower temperatures promotes hepatocyte proliferation and improves the metabolic efficiency in mouse liver while heat stress at higher temperatures inhibits hepatocyte proliferation, promotes hepatocyte apoptosis and induces hepatocyte necrosis. This may give a hint to understanding human liver injury in high temperatures. Moreover, it is the first time that the analog of CYP3A4 was detected in mouse hepatocellular cytoplasm. It is worthwhile to dissect its function in future work.


Subject(s)
Apoptosis , Cell Proliferation , Heat Stress Disorders/physiopathology , Hepatocytes/metabolism , Hepatocytes/pathology , Alanine Transaminase/blood , Animals , Aspartate Aminotransferases/blood , Cytochrome P-450 CYP1A2/biosynthesis , Cytochrome P-450 CYP2E1/biosynthesis , Cytochrome P-450 CYP3A/biosynthesis , Female , HSP70 Heat-Shock Proteins/biosynthesis , Hot Temperature , In Situ Nick-End Labeling , Liver , Male , Mice , Mice, Inbred BALB C , Necrosis , Proliferating Cell Nuclear Antigen/biosynthesis , Proto-Oncogene Proteins c-bcl-2/biosynthesis , RNA, Messenger/metabolism , bcl-2-Associated X Protein/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...