Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 335
Filter
1.
J Am Chem Soc ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949598

ABSTRACT

Advanced in vitro diagnosis technologies are highly desirable in early detection, prognosis, and progression monitoring of diseases. Here, we engineer a multiplex protein biosensing strategy based on the tunable liquid confinement self-assembly of multi-material heterochains, which show improved sensitivity, throughput, and accuracy compared to standard ELISA kits. By controlling the material combination and the number of ligand nanoparticles (NPs), we observe robust near-field enhancement as well as both strong electromagnetic resonance in polymer-semiconductor heterochains. In particular, their optical signals show a linear response to the coordination number of the semiconductor NPs in a wide range. Accordingly, a visible nanophotonic biosensor is developed by functionalizing antibodies on central polymer chains that can identify target proteins attached to semiconductor NPs. This allows for the specific detection of multiple protein biomarkers from healthy people and pancreatic cancer patients in one step with an ultralow detection limit (1 pg/mL). Furthermore, rapid and high-throughput quantification of protein expression levels in diverse clinical samples such as buffer, urine, and serum is achieved by combining a neural network algorithm, with an average accuracy of 97.3%. This work demonstrates that the heterochain-based biosensor is an exemplary candidate for constructing next-generation diagnostic tools and suitable for many clinical settings.

2.
J Am Chem Soc ; 146(26): 18104-18116, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38899355

ABSTRACT

The submarine-confined bubble swarm is considered an important constraining environment for the early evolution of living matter due to the abundant gas/water interfaces it provides. Similarly, the spatiotemporal characteristics of the confinement effect in this particular scenario may also impact the origin, transfer, and amplification of chirality in organisms. Here, we explore the confinement effect on the chiral hierarchical assembly of the amphiphiles in the confined bubble array stabilized by the micropillar templates. Compared with the other confinement conditions, the assembly in the bubble scenario yields a fractal morphology and exhibits a unique level of the chiral degree, ordering, and orientation consistency, which can be attributed to the characteristic interfacial effects of the rapidly formed gas/water interfaces. Thus, molecules with a balanced amphiphilicity can be more favorable for the promotion. Not limited to the pure enantiomers, chiral amplification of the enantiomer-mixed assembly is observed only in the bubble scenario. Beyond the interfacial mechanism, the fast formation kinetics of the confined liquid bridges in the bubble scenario endows the assembly with the tunable hierarchical morphology when regulating the amphiphilicity, aggregates, and confined spaces. Furthermore, the chiral-induced spin selectivity (CISS) effect of the fractal hierarchical assembly was systematically investigated, and a strategy based on photoisomerization was developed to efficiently modulate the CISS effect. This work provides insights into the robustness of confined bubble swarms in promoting a chiral hierarchical assembly and the potential applications of the resulting chiral hierarchical patterns in solid-state spintronic and optical devices.

3.
Adv Mater ; : e2404740, 2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38853487

ABSTRACT

The use of optoelectronic devices for high-speed and low-power data transmission and computing has been considered in the next-generation logic circuits. Heterostructures, which can generate and transmit photoresponse signals dealing with different input lights, are highly desirable for optoelectronic logic gates. Here, the printed on-chip perovskite heterostructures are demonstrated to achieve optical-controlled "AND" and "OR" optoelectronic logic gates. Perovskite heterostructures are printed with a high degree of control over composition, site, and crystallization. Different regions of the printed perovskite heterostructures exhibit distinguishable photoresponse to varied wavelengths of input lights, which can be utilized to achieve optical-controlled logic functions. Correspondingly, parallel operations of the two logic gates ("AND" and "OR") by way of choosing the output electrodes under the single perovskite heterostructure. Benefiting from the uniform crystallization and strict alignment of the printed perovskite heterostructures, the integrated 3×3 pixels all exhibit 100% logic operation accuracy. Finally, optical-controlled logic gates responding to multi-wavelength light can be printed on the predesigned micro-electrodes as the on-chip integrated circuits. This printing strategy allows for integrating heterostructure-based optical and electronic devices from a unit-scale device to a system-scale device. This article is protected by copyright. All rights reserved.

4.
Mol Biomed ; 5(1): 21, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38844562

ABSTRACT

Colorectal carcinoma (CRC) stands as a pressing global health issue, marked by the unbridled proliferation of immature cells influenced by multifaceted internal and external factors. Numerous studies have explored the intricate mechanisms of tumorigenesis in CRC, with a primary emphasis on signaling pathways, particularly those associated with growth factors and chemokines. However, the sheer diversity of molecular targets introduces complexity into the selection of targeted therapies, posing a significant challenge in achieving treatment precision. The quest for an effective CRC treatment is further complicated by the absence of pathological insights into the mutations or alterations occurring in tumor cells. This study reveals the transfer of signaling from the cell membrane to the nucleus, unveiling recent advancements in this crucial cellular process. By shedding light on this novel dimension, the research enhances our understanding of the molecular intricacies underlying CRC, providing a potential avenue for breakthroughs in targeted therapeutic strategies. In addition, the study comprehensively outlines the potential immune responses incited by the aberrant activation of signaling pathways, with a specific focus on immune cells, cytokines, and their collective impact on the dynamic landscape of drug development. This research not only contributes significantly to advancing CRC treatment and molecular medicine but also lays the groundwork for future breakthroughs and clinical trials, fostering optimism for improved outcomes and refined approaches in combating colorectal carcinoma.


Subject(s)
Colorectal Neoplasms , Molecular Targeted Therapy , Signal Transduction , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/therapy , Colorectal Neoplasms/immunology , Humans , Signal Transduction/drug effects , Molecular Targeted Therapy/methods , Animals , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology
5.
Angew Chem Int Ed Engl ; : e202407192, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38787611

ABSTRACT

Formamidinium-lead triiodide (FAPbI3) perovskite holds promise as a prime candidate in the realm of perovskite photovoltaics. However, the photo-active α-FAPbI3 phase, existing as a metastable state, is observable solely at elevated temperatures and is susceptible to degradation into the δ-phase in ambient air. Therefore, the attainment of phase-stable α-FAPbI3 in ambient conditions has become a crucial objective in perovskite research. Here, we proposed an efficient conversion process of PbI2 into the α-FAPbI3 perovskites in ambient air. This conversion was facilitated by the introduction of chelating molecules, which interacted with PbI2 to form an intermediate phase. Due to the reduced formation barrier resulting from the altered reaction pathway, this stable intermediate phase transitioned directly into α-FAPbI3 upon the deposition of the organic cation solution, effectively bypassing the formation of δ-FAPbI3. Consequently, the ambient-fabricated FAPbI3 perovskite solar cells (PSCs) exhibited an outstanding power conversion efficiency of 25.08 %, along with a high open-circuit voltage of 1.19 V. Furthermore, the unencapsulated devices demonstrated remarkable environmental stability. Notably, this innovative approach promises broad applicability across various chelating molecules, opening new avenues for further progress in the ambient air fabrication of FAPbI3 PSCs.

6.
Nat Commun ; 15(1): 4225, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762537

ABSTRACT

Asymmetric mechanical transducers have important applications in energy harvesting, signal transmission, and micro-mechanics. To achieve asymmetric transformation of mechanical motion or energy, active robotic metamaterials, as well as materials with asymmetric microstructures or internal orientation, are usually employed. However, these strategies usually require continuous energy supplement and laborious fabrication, and limited transformation modes are achieved. Herein, utilizing wettability patterned surfaces for precise control of the droplet contact line and inner flow, we demonstrate a droplet-based mechanical transducer system, and achieve multimodal responses to specific vibrations. By virtue of the synergistic effect of surface tension and solid-liquid adhesion on the liquid dynamics, the droplet on the patterned substrate can exhibit symmetric/asymmetric vibration transformation when the substrate vibrates horizontally. Based on this, we construct arrayed patterns with distinct arrangements on the substrate, and employ the swarm effect of the arrayed droplets to achieve three-dimensional and multimodal actuation of the target plate under a fixed input vibration. Further, we demonstrate the utilization of the mechanical transducers for vibration management, object transport, and laser modulation. These findings provide a simple yet efficient strategy to realize a multimodal mechanical transducer, which shows significant potential for aseismic design, optical molding, as well as micro-electromechanical systems (MEMS).

7.
Adv Mater ; 36(26): e2402143, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38609159

ABSTRACT

Perovskite/organic tandem solar cells (PO-TSCs) demonstrate exceptional suitability for emerging applications such as building-integrated photovoltaics, wearable devices, and greenhouse farming. By leveraging the distinctive attributes of perovskite and organic materials, which encompass expanded solar spectrum utilization, chemically benign solubility, and soft nature, PO-TSCs position themselves as ideal candidates for high-performance semi-transparent photovoltaics (ST-PVs). Despite these advantages, their development significantly lags behind other perovskite-based counterparts, such as perovskite/perovskite, perovskite/silicon, and perovskite/Cu(In, Ga)Se2. To address existing challenges and unlock the full potential of PO-TSCs, an exploration of the fundamental mechanisms governing tandem photovoltaic devices is embarked. Delving into critical aspects such as charge generation/separation, energy level alignment, and material choices becomes pivotal for optimizing PO-TSC performance. The investigation of monolithic two-terminal PO-TSCs offers insights into achievements and barriers, recognizing the competitive landscape with other TSC counterparts. Further scrutiny of perovskite absorbers and organic absorbers in TSCs reveals strategies aimed at enhancing stability and efficiency. The discussion extends to interconnection layers, elucidating their role in optimizing light transmission and balancing carrier recombination. In conclusion, a compelling outlook on the dynamic landscape of PO-TSCs is presented, highlighting the remarkable efficiency progression and signaling their potential to revolutionize solar energy harvesting technologies.

8.
Angew Chem Int Ed Engl ; 63(27): e202403264, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38659076

ABSTRACT

In situ cyclized polyacrylonitrile (CPAN) is developed to replace n-type metal oxide semiconductors (TiO2 or SnO2) as an electron selective layer (ESL) for highly efficient and stable n-i-p perovskite solar cells (PSCs). The CPAN layer is fabricated via facile in situ cyclization reaction of polyacrylonitrile (PAN) coated on a conducting glass substrate. The CPAN layer is robust and insoluble in common solvents, and possesses n-type semiconductor properties with a high electron mobility of 4.13×10-3 cm2 V-1 s-1. With the CPAN as an ESL, the PSC affords a power conversion efficiency (PCE) of 23.12 %, which is the highest for the n-i-p PSCs with organic ESLs. Moreover, the device with the CPAN layer holds superior operational stability, maintaining over 90 % of their initial efficiency after 500 h continuous light soaking. These results confirm that the CPAN layer would be a desirable low-cost and efficient ESL for n-i-p PSCs and other photoelectronic devices with high performance and stability.

9.
Adv Mater ; 36(4): e2304935, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37589665

ABSTRACT

Rapid detection of various exosomes is of great significance in early diagnosis and postoperative monitoring of cancers. Here, a divisional optical biochip is reported for multiplex exosome analysis via combining the self-assembly of nanochains and precise surface patterning. Arising from resonance-induced near-field enhancement, the nanochains show distinct color changes after capturing target exosomes for direct visual detection. Then, a series of divisional nanochain-based biochips conjugated with several specific antibodies are fabricated through designed hydrophilic and hydrophobic patterns. Because of the significant wettability difference, one sample droplet is precisely self-splitting into several microdroplets enabling simultaneous identification of multiple target exosomes in 30 min with a sensitivity of 6 × 107 particles mL-1 , which is about two orders lower than enzyme-linked immunosorbent assay. Apart from the trace amount detection, excellent semiquantitative capability is demonstrated to distinguish clinical exosomes from glioblastoma patients and healthy people. This method is simple, versatile, and highly efficient that can be extended as a diagnostic tool for many diseases, promoting the development of liquid biopsy.


Subject(s)
Exosomes , Humans , Exosomes/chemistry , Point-of-Care Systems , Wettability , Hydrophobic and Hydrophilic Interactions , Antibodies
10.
Exploration (Beijing) ; 3(4): 20220052, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37933238

ABSTRACT

Luminescence is an essential signal for many plants, insects, and marine organisms to attract the opposite sex, avoid predators, and so on. Most luminescent living organisms have ingenious optical structures which can help them get high luminescent performances. These remarkable and efficient structures have been formed by natural selection from long-time evolution. Researchers keenly observed the enhanced luminescence phenomena and studied how these phenomena happen in order to learn the characteristics of bio-photonics. In this review, we summarize the optical structures for enhancing luminescence and their applications. The structures are classified according to their different functions. We focus on how researchers use these biological inspirations to enhance different luminescence processes, such as chemiluminescence (CL), photoluminescence (PL), and electroluminescence (EL). It lays a foundation for further research on the applications of luminescence enhancement. Furthermore, we give examples of luminescence enhancement by bio-inspired structures in information encryption, biochemical detection, and light sources. These examples show that it is possible to use bio-inspired optical structures to solve complex problems in optical applications. Our work will provide guidance for research on biomimetic optics, micro- and nano-optical structures, and enhanced luminescence.

11.
Chem Commun (Camb) ; 59(93): 13895-13898, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37934457

ABSTRACT

Pluronic F127, P123 and cross-linked F127 diacrylate micelles are photochemically deoxygenating nanocapsules in which oxygen could be removed by photochemical reaction with a surfactant and efficient triplet-triplet annihilation photon upconversion (TTA-UC) can be achieved in air. The efficiency of TTA-UC under air is comparable to that under deoxygenated conditions.

12.
iScience ; 26(11): 108298, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-38026179

ABSTRACT

Reliable monitoring the movement amplitude and dynamics during sports exercise is significant for improving training results and preventing training wound. Here, we present a printed perovskite-based photodetector for real-time and quantitative monitoring of sports motion. The ordered nucleation and growth of perovskite crystals are regulated by the 4-acetamidothiophenol (AMTP) at the interface, which promotes the size of perovskite crystals into the micrometer. Benefiting from the uniformity of the AMTP-regulated MAPbI3, the as-prepared photodetector gives great photocurrent response under indoor light or outdoor light. During the exercise, real-time monitoring sports motion is achieved through detecting the illumination changing of photodetectors attaching on the wrist and ankles. Moreover, twelve kinds of common sports can be quantitatively analyzed with the detection of illumination changing on the photodetector. Such photodetector provides an efficient measurement method of wearable electronics for sports monitoring.

13.
Colloids Surf B Biointerfaces ; 231: 113571, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37797469

ABSTRACT

Droplet deposition on deformable matrix has a broad application prospect. Regular deposition and diffusion of droplet on the substrate is the key to prepare flexible concave structure. Direct writing technique is an advanced method for depositing ink droplet on various substrates, which could produce a variety of deposition forms. Meanwhile, direct writing technique has the characteristics of simplicity, convenience and strong controllability. In this work, patterned concave structure was fabricated with viscoelastic substrate by direct writing technology, depositing behavior of ink droplet, formation condition and shape control of concave structure were studied with viscoelastic substrate, and practical application of the patterned concave structure was explored in loading and releasing liquid on skin surface. This study provides an efficient method for the preparation and application of controllable concave surface.


Subject(s)
Writing , Diffusion
14.
Nat Commun ; 14(1): 4730, 2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37550327

ABSTRACT

Despite the remarkable progress made in perovskite solar cells, great concerns regarding potential Pb contamination risk and environmental vulnerability risks associated with perovskite solar cells pose a significant obstacle to their real-world commercialization. In this study, we took inspiration from the ensnaring prey behavior of spiders and chemical components in spider web to strategically implant a multifunctional mesoporous amino-grafted-carbon net into perovskite solar cells, creating a biomimetic cage traps that could effectively mitigate Pb leakage and shield the external invasion under extreme weather conditions. The synergistic Pb capturing mechanism in terms of chemical chelation and physical adsorption is in-depth explored. Additionally, the Pb contamination assessment of end-of-life perovskite solar cells in the real-world ecosystem, including Yellow River water and soil, is proposed. The sustainable closed-loop Pb management process is also successfully established involving four critical steps: Pb precipitation, Pb adsorption, Pb desorption, and Pb recycling. Our findings provide inspiring insights for promoting green and sustainable industrialization of perovskite solar cells.

15.
Anal Chem ; 95(31): 11769-11776, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37489945

ABSTRACT

Biomolecular markers, particularly circulating microRNAs (miRNAs) play an important role in diagnosis, monitoring, and therapeutic intervention of cancers. However, existing detection strategies remain intricate, laborious, and far from being developed for point-of-care testing. Here, we report a portable colorimetric sensor that utilizes the hetero-assembly of nanostructures driven by base pairing and recognition for direct detection of miRNAs. Following hybridization, two sizes of nanoparticles modified with single-strand DNA can be robustly assembled into heterostructures with strong optical resonance, exhibiting distinct structure colors. Particularly, the large nanoparticles are first arranged into nanochains to enhance scattering signals of small nanoparticles, which allows for sensitive detection and quantification of miRNAs without the requirement of target extraction, amplification, and fluorescent labels. Furthermore, we demonstrate the high specificity and single-base selectivity of testing different miRNA samples, which shows great potential in the diagnosis, staging, and monitoring of cancers. These heterogeneous assembled nanostructures provide an opportunity to develop simple, fast, and convenient tools for miRNAs detection, which is suitable for many scenarios, especially in low-resource setting.


Subject(s)
Biosensing Techniques , Circulating MicroRNA , MicroRNAs , Nanostructures , MicroRNAs/genetics , Nucleic Acid Hybridization , Coloring Agents , Limit of Detection
16.
Nanomicro Lett ; 15(1): 187, 2023 Jul 29.
Article in English | MEDLINE | ID: mdl-37515723

ABSTRACT

Multifunctional photodetectors boost the development of traditional optical communication technology and emerging artificial intelligence fields, such as robotics and autonomous driving. However, the current implementation of multifunctional detectors is based on the physical combination of optical lenses, gratings, and multiple photodetectors, the large size and its complex structure hinder the miniaturization, lightweight, and integration of devices. In contrast, perovskite materials have achieved remarkable progress in the field of multifunctional photodetectors due to their diverse crystal structures, simple morphology manipulation, and excellent optoelectronic properties. In this review, we first overview the crystal structures and morphology manipulation techniques of perovskite materials and then summarize the working mechanism and performance parameters of multifunctional photodetectors. Furthermore, the fabrication strategies of multifunctional perovskite photodetectors and their advancements are highlighted, including polarized light detection, spectral detection, angle-sensing detection, and self-powered detection. Finally, the existing problems of multifunctional detectors and the perspectives of their future development are presented.

17.
ACS Nano ; 17(12): 11645-11654, 2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37307592

ABSTRACT

Self-assembly of colloidal nanoparticles has generated tremendous interest due to its widespread applications in structural colorations, sensors, and optoelectronics. Despite numerous strategies being developed to fabricate sophisticated structures, the heterogeneous self-assembly of a single type of nanoparticle in one step remains challenging. Here, facilitated by spatial confinement induced by a skin layer in a drying droplet, we achieve the heterogeneous self-assembly of a single type of nanoparticle by quickly evaporating a colloid-poly (ethylene glycol) (PEG) droplet. During the drying process, a skin layer forms at the droplet surface. The resultant spatial confinement assembles nanoparticles into face-centered-cubic (FCC) lattices with (111) and (100) plane orientations, generating binary bandgaps and two structural colors. The self-assembly of nanoparticles can be regulated by varying the PEG concentration so that FCC lattices with homo- or heterogeneous orientation planes can be prepared on demand. Besides, the approach is applicable for diverse droplet shapes, various substrates, and different nanoparticles. The one-pot general strategy breaks the requirements for multiple types of building blocks and predesigned substrates, extending the fundamental understanding underlying colloidal self-assembly.

18.
Chemistry ; 29(45): e202300251, 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37261435

ABSTRACT

The new 6π-electron four-membered ring compound 3-fluoro-1λ2 ,2,4,3λ3 -thiadiazaphosphetidine, FP(µ-N)2 S, has been generated in the gas phase through high-vacuum flash pyrolysis (HVFP) of thiophosphoryl diazide, FP(S)(N3 )2 , at 1000 K. Subsequent isolation of FP(µ-N)2 S in cryogenic matrices (Ar, Ne, and N2 ) allows its characterization with matrix-isolation IR and UV-vis spectroscopy by combination with 15 N-isotope labeling and computations at the CCSD(T)-F12a/VTZ-F12 level of theory. Upon visible-light irradiation at 550 nm, this cyclic compound undergoes ring-opening to the thiazyl isomer FPNSN, followed by dissociation to FP and SN2 under subsequent UV-irradiation at 365 nm. In sharp contrast to the square planar structure for the isolobal four-membered ring S2 N2 , a puckered structure with significant biradical character has been found for FP(µ-N)2 S.

19.
Angew Chem Int Ed Engl ; 62(28): e202300971, 2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37165542

ABSTRACT

The unprecedented development of perovskite solar cells (PSCs) makes them one of the most promising candidates for terawatt-scale green energy production with low cost. However, the high boiling point solvents during the solution-processed film deposition cause anisotropic crystal growth and toxic solvent vapor during high-throughput manufacturing. Here, a dual-component green solvent consisting of isopropyl acetate and acetonitrile is proposed to form a volatile perovskite precursor, which can realize the high-quality perovskite thin film deposition by intermediate phase regulation. A room-temperature stable perovskite intermediate phase is constructed with the engagement of isopropyl acetate as co-solvent, which suppresses the exploding nucleation rate in volatile perovskite precursor, providing a fine grain growth rate and wide processing window in scalable film deposition. The corresponding PSCs fabricated by blade coating without anti-solvents or gas quenching achieve power conversion efficiency (PCE) of 16.37 % and 15.29 % for the areas of 14.08 cm2 and 37.83 cm2 , respectively.

20.
Small ; 19(35): e2301362, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37170715

ABSTRACT

Precise control of molecular assembly is of great significance in the application of functional molecules. This work has systematically investigated the humidity effect in bubble-assisted molecular assembly. This work finds humidity is critical in the evolution of the soft confined space, leading to the formation of microscale liquid confined space under high humidity, and nanoscale liquid confined space under low humidity. It is also revealed that the differences in surface wettability and adhesion play the key role. Consequently, a flat pattern with thermodynamically favorable ordered structure and a sharp pattern with dynamically favorable disordered structure are achieved, which show different solid-state photoisomerization behaviors and photoresponsiveness. Interestingly, conductivity of sharp pattern with disordered structure is higher than that of flat pattern with layered ordered structure due to electronic transport mechanism of different spatial dimensions. This work opens a new way for manipulating the molecular self-assembly to control the morphology and function of molecular patterns.

SELECTION OF CITATIONS
SEARCH DETAIL
...