Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Cytokine Growth Factor Rev ; 76: 77-85, 2024 04.
Article in English | MEDLINE | ID: mdl-38185568

ABSTRACT

Myeloid-derived growth factor (MYDGF) is a paracrine protein produced by bone marrow-derived monocytes and macrophages. Current research shows that it has protective effects on the cardiovascular system, such as repairing heart tissue after myocardial infarction, enhancing cardiomyocyte proliferation, improving cardiac regeneration after myocardial injury, regulating proliferation and survival of endothelial cells, reducing endothelial cell damage, resisting pressure overload-induced heart failure, as well as protecting against atherosclerosis. Furthermore, regarding the metabolic diseases, MYDGF has effects of improving type 2 diabetes mellitus, relieving non-alcoholic fatty liver disease, alleviating glomerular diseases, and resisting osteoporosis. Herein, we will discuss the biology of MYDGF and its effects on cardiovascular and metabolic diseases.


Subject(s)
Cardiovascular System , Diabetes Mellitus, Type 2 , Myocardial Infarction , Humans , Endothelial Cells , Myocardial Infarction/metabolism , Cardiovascular System/metabolism , Intercellular Signaling Peptides and Proteins
2.
J Biomol NMR ; 78(1): 31-37, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38072902

ABSTRACT

For the A2A adenosine receptor (A2AAR), a class A G-protein-coupled receptor (GPCR), reconstituted in n-dodecyl-ß-D-maltoside (DDM)/|||||cholesteryl hemisuccinate (CHS) mixed micelles, previous 19F-NMR studies revealed the presence of multiple simultaneously populated conformational states. Here, we study the influence of a different detergent, lauryl maltose neopentyl glycol (LMNG) in mixed micelles with CHS, and of lipid bilayer nanodiscs on these conformational equilibria. The populations of locally different substates are pronouncedly different in DDM/|||||CHS and LMNG/|||||CHS micelles, whereas the A2AAR conformational manifold in LMNG/|||||CHS micelles is closely similar to that in the lipid bilayer nanodiscs. Considering that nanodiscs represent a closer match of the natural lipid bilayer membrane, these observations support that LMNG/|||||CHS micelles are a good choice for reconstitution trials of class A GPCRs for NMR studies in solution.


Subject(s)
Detergents , Lipid Bilayers , Lipid Bilayers/chemistry , Detergents/chemistry , Micelles , Nuclear Magnetic Resonance, Biomolecular , Receptors, Purinergic P1 , Receptor, Adenosine A2A/chemistry
3.
Crit Rev Food Sci Nutr ; : 1-18, 2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37459185

ABSTRACT

Type II collagen is a homologous super-helical structure consisting of three identical α1(II) chains. It is a major component of animal cartilage, and is widely used in the food industry. Type II collagen can be extracted by acids, salts, enzymes, and via auxiliary methods and can be further hydrolyzed chemically and enzymatically to produce collagen peptides. Recent studies have shown that type II collagen and its polypeptides have good self-assembly properties and important biological activities, such as maintaining cartilage tissue integrity, inducing immune tolerance, stimulating chondrocyte growth and redifferentiation, and providing antioxidant benefits. This review focuses specifically on type II collagen and describes its structure, extraction, and purification, as well as the preparation of type II collagen peptides. In particular, the self-assembly properties and functional activities of type II collagen and collagen peptides are reviewed. In addition, recent research advances in the application of type II collagen and collagen peptides in functional foods, food additives, food coating materials, edible films, and carriers for the food industry are presented. This paper provides more detailed and comprehensive information on type II collagen and peptide for their application.

4.
J Sci Food Agric ; 103(14): 6884-6894, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37286475

ABSTRACT

BACKGROUND: Porcine nasal cartilage type II collagen-derived peptides (PNCPs) may be complexed with calcium to provide a highly bioavailable, low-cost, and effective calcium food supplement. However, the calcium-binding characteristics of PNCPs have not yet been investigated. In the present study, calcium-binding peptides were derived from porcine nasal cartilage type II collagen and the resulting PNCPs-Ca complex was characterized. RESULTS: The study reveals that the calcium-binding capacity of PNCPs is closely related to enzymatic hydrolysis conditions. The highest calcium-binding capacity of PNCPs was observed at a hydrolysis time of 4 h, temperature of 40 °C, enzyme dosage of 1%, and solid-to-liquid ratio of 1:10. Scanning electron microscopy and energy dispersive X-ray spectroscopy revealed that the PNCPs had a pronounced capacity for calcium binding, with the PNCPs-Ca complex exhibiting a clustered structure consisting of aggregated spherical particles. Fourier-transform infrared spectroscopy, fluorescence spectroscopy, X-ray diffraction, dynamic light scattering, amino acid composition, and molecular weight distribution analyses all indicated that the PNCPs and calcium complexed via the carboxyl oxygen and amino nitrogen atoms, leading to the formation of a ß-sheet structure during the chelation process. In addition, the stability of the PNCPs-Ca complex was maintained over a range of pH values consistent with those found in the human gastrointestinal tract, facilitating calcium absorption. CONCLUSION: These research findings suggest the feasibility of converting by-products from livestock processing into calcium-binding peptides, providing a scientific basis for the development of novel calcium supplements and the potential reduction of resource waste. © 2023 Society of Chemical Industry.


Subject(s)
Calcium , Nasal Cartilages , Humans , Animals , Swine , Calcium/metabolism , Collagen Type II , Nasal Cartilages/chemistry , Nasal Cartilages/metabolism , Peptides/chemistry , Calcium, Dietary/analysis
5.
FEBS Lett ; 597(11): 1541-1549, 2023 06.
Article in English | MEDLINE | ID: mdl-37073622

ABSTRACT

G protein-coupled receptors (GPCRs) transmit signals from drugs across cell membranes, leading to associated physiological effects. To study the structural basis of the transmembrane signalling, in-membrane chemical modification (IMCM) has previously been introduced for 19 F-labelling of GPCRs expressed in Spodoptera frugiperda (Sf9) insect cells. Here, IMCM is used with the A2A adenosine receptor (A2A AR) expressed in Pichia pastoris; 19 F-NMR revealed nearly complete solvent protection of the A2A AR transmembrane domain in the membrane and in 2,2-didecylpropane-1,3-bis-ß-D-maltopyranoside (LMNG)/cholesteryl hemisuccinate (CHS) micelles, and extensive solvent accessibility for A2A AR in n-dodecyl ß-D-maltoside (DDM)/CHS micelles. No Cys residue dominated non-specific labelling with 2,2,2-trifluoroethanethiol. These observations yield an improved protocol for IMCM 19 F-labelling of GPCRs and new insights into variable solvent accessibility for function-related characterization of GPCRs.


Subject(s)
Micelles , Receptors, G-Protein-Coupled , Solvents , Cell Membrane/metabolism , Receptors, G-Protein-Coupled/chemistry , Membranes/metabolism , Receptor, Adenosine A2A/chemistry , Receptor, Adenosine A2A/metabolism
6.
Front Psychiatry ; 13: 993356, 2022.
Article in English | MEDLINE | ID: mdl-36186868

ABSTRACT

Schizophrenia (SZ), bipolar disorder (BD), and major depressive disorder (MDD) share etiological and pathophysiological characteristics. Although neuroimaging studies have reported hippocampal alterations in SZ, BD, and MDD, little is known about how different hippocampal subregions are affected in these conditions because such subregions, namely, the cornu ammonis (CA), dentate gyrus (DG), and subiculum (SUB), have different structural foundations and perform different functions. Here, we hypothesize that different hippocampal subregions may reflect some intrinsic features among the major psychiatric disorders, such as SZ, BD, and MDD. By investigating resting functional connectivity (FC) of each hippocampal subregion among 117 SZ, 103 BD, 96 MDD, and 159 healthy controls, we found similarly and distinctly changed FC of hippocampal subregions in the three disorders. The abnormal functions of middle frontal gyrus might be the core feature of the psychopathological mechanisms of SZ, BD, and MDD. Anterior cingulate cortex and inferior orbital frontal gyrus might be the shared abnormalities of SZ and BD, and inferior orbital frontal gyrus is also positively correlated with depression and anxiety symptoms in SZ and BD. Caudate might be the unique feature of SZ and showed a positive correlation with the cognitive function in SZ. Middle temporal gyrus and supplemental motor area are the differentiating features of BD. Our study provides evidence for the different functions of different hippocampal subregions in psychiatric pathology.

8.
Front Psychiatry ; 11: 520, 2020.
Article in English | MEDLINE | ID: mdl-32595534

ABSTRACT

BACKGROUND: Little empirical evidence is known about the sleep quality of frontline health professionals working in isolation units or hospitals during the novel coronavirus disease (COVID-19) outbreak in China. This study thus aimed to examine the prevalence of poor sleep quality and its demographic and correlates among frontline health professionals. METHODS: This is a multicenter, cross-sectional survey conducted in Liaoning province, China. Sleep quality was measured by the Pittsburgh Sleep Quality Index (PSQI). RESULTS: A total of 1,931 frontline health professionals were recruited. The prevalence of poor sleep quality was 18.4% (95%CI: 16.6%-20.11%). Multivariate logistic regression analysis found that older age (OR=1.043, 95%CI=1.026-1.061, P < 0.001), being nurse (OR=3.132, 95%CI=1.727-5.681, P < 0.001), and working in outer emergency medical team (OR=1.755, 95%CI=1.029-3.064, P=0.039) were positively associated with poor sleep quality. Participants who were familiar with crisis response knowledge were negatively associated with poor sleep quality (OR=0.70, 95%CI=0.516-0.949, P=0.021). CONCLUSION: The prevalence of poor sleep quality was relatively low among frontline health professionals during the COVID-19 epidemic. Considering the negative impact of poor sleep quality on health professionals' health outcomes and patient outcomes, regularly screening and timely treatments are warranted to reduce the likelihood of poor sleep quality in health professionals.

9.
Front Psychiatry ; 11: 278, 2020.
Article in English | MEDLINE | ID: mdl-32425819

ABSTRACT

The hippocampus is an important candidate region in the study of functional connectivity alterations in schizophrenia (SZ) given its role as a functional hub for multiple brain networks. Although studies have implicated the hippocampus in SZ, no studies have compared hippocampal functional connectivity in healthy participants, patients with SZ, and unaffected family members (UAFMs). Patients and UAFM likely share biomarkers associated with susceptibility to SZ; the study of UAFM may also reveal compensatory markers. Patients with SZ, UAFM, and healthy control (HC) participants underwent resting state magnetic resonance imagingty and completed the Wisconsin Card Sort Task (WCST) as a measure of general cognitive function. We compared functional coupling with a hippocampus seed across the three groups. SZ and UAFM groups shared reductions in connectivity between the hippocampus and the striatum relative to HC. We also identified a significant positive correlation between WCST errors and hippocampal-striatal connectivity in the UAFM group. Hippocampal-striatal rsFC may be associated with familial susceptibility to SZ and with subtle cognitive deficits in the UAFM of individuals with SZ.

10.
Quant Imaging Med Surg ; 10(1): 257-268, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31956547

ABSTRACT

BACKGROUND: A single-nucleotide polymorphism (SNP) of the LHPP gene (rs35936514) has been reported to be associated with major depressive disorder (MDD) in genome-wide association studies. However, the systems-level neural effects of rs35936514 that mediate the association are unknown. We hypothesized that variations in rs35936514 would be associated with structural and functional changes in gray matter (GM) at rest in MDD patients. METHODS: A total of 50 MDD patients and 113 healthy controls (HCs) were studied. Functional connectivity (FC) was analyzed by defining the bilateral hippocampus as the seed region. Voxel-based morphometry (VBM) was performed to assess the patterns of GM volume. The subjects were further divided into two groups: a CC homozygous group (CC; 24 MDD and 56 HC) and a risk T-allele carrier group (CT/TT genotypes; 26 MDD and 57 HC). A 2×2 analysis of variance (ANOVA: diagnosis × genotype) was used to determine the interaction effects and main effect (P<0.05). RESULTS: Significant diagnosis × genotype interaction effects on brain morphology and FC were noted. Compared to other subgroups, the MDD patients with the T allele showed an increased hippocampal FC in the bilateral calcarine cortex and cuneus and a decreased hippocampal FC in the right dorsolateral prefrontal cortex (DLPFC), bilateral anterior cingulate cortex (ACC), and medial prefrontal cortex (MPFC), in addition to reduced GM volume in the right DLPFC, bilateral temporal cortex, and posterior cingulate cortex (PCC). CONCLUSIONS: LHPP gene polymorphisms may affect functional and structural changes in the GM at rest and may play an important role in the pathophysiological mechanisms of MDD.

11.
Brain Imaging Behav ; 14(4): 1025-1033, 2020 Aug.
Article in English | MEDLINE | ID: mdl-31250265

ABSTRACT

A single nucleotide polymorphism at the LHPP gene (rs35936514) has been reported to be associated with major depressive disorder (MDD) in genome-wide association studies. We conducted a neuroimaging analysis to explore whether and which brain neural systems are affected by LHPP variation. Since LHPP variants seem to be associated with the hippocampus, we assessed the relationship between rs35936514 variation and structural-functional connectivity within a hippocampal-corticolimbic neural system implicated in MDD. A total of 122 Chinese subjects were divided into a CC homozygous group (CC genotype, n = 60) and a T allele-carrier group (CT/TT genotypes, n = 62). All subjects participated in resting-state functional magnetic resonance imaging (rs-fMRI) and diffusion tensor imaging (DTI) scans. Structural and functional connectivity data analyses were then performed. Compared to the CC group, the T allele-carrier group showed significantly higher fractional anisotropy (FA) values in the fornix as well as increased functional connectivity from the hippocampus to the rostral part of the anterior cingulate cortex (rACC). Moreover, a significant negative correlation between fornix FA value and hippocampus-rACC functional connectivity was identified (P < 0.05). These findings suggest that there is a relationship between rs35936514 variation and both structural and functional hippocampal-corticolimbic neural system involvement in MDD. LHPP may play an important role in the neuropathophysiology of MDD.


Subject(s)
Depressive Disorder, Major , Diffusion Tensor Imaging , Inorganic Pyrophosphatase/genetics , Depressive Disorder, Major/diagnostic imaging , Depressive Disorder, Major/genetics , Genome-Wide Association Study , Hippocampus/diagnostic imaging , Humans , Magnetic Resonance Imaging
12.
Front Psychiatry ; 10: 253, 2019.
Article in English | MEDLINE | ID: mdl-31105603

ABSTRACT

Background: Cognitive dysfunction is considered a core feature among schizophrenia (SZ), bipolar disorder (BD), and major depressive disorder (MDD). Despite abundant literature comparing cognitive dysfunction among these disorders, the relationship between cognitive dysfunction and symptom dimensions remains unclear. The study aims are a) to identify the factor structure of the BPRS-18 and b) to examine the relationship between symptom domains and cognitive function across SZ, BD, and MDD. Methods: A total of 716 participants [262 with SZ, 104 with BD, 101 with MDD, and 249 healthy controls (HC)] were included in the study. One hundred eighty participants (59 with SZ, 23 with BD, 24 with MDD, and 74 HC) completed the MATRICS Consensus Cognitive Battery (MCCB), and 507 participants (85 with SZ, 89 with BD, 90 with MDD, and 243 HC) completed the Wisconsin Card Sorting Test (WCST). All patients completed the Brief Psychiatric Rating Scale (BPRS). Results: We identified five BPRS exploratory factor analysis (EFA) factors ("affective symptoms," "psychosis," "negative/disorganized symptoms," "activation," and "noncooperation") and found cognitive dysfunction in all of the participant groups with psychiatric disorders. Negative/disorganized symptoms were the most strongly associated with cognitive dysfunctions across SZ, BD, and MDD. Conclusions: Our findings suggest that cognitive dysfunction severity relates to the negative/disorganized symptom domain across SZ, BD, and MDD, and negative/disorganized symptoms may be an important target for effective cognitive remediation in SZ, BD, and MDD.

13.
Neurosci Bull ; 35(4): 735-742, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30852803

ABSTRACT

ZNF804A rs1344706 has been identified as one of the risk genes for schizophrenia. However, the neural mechanisms underlying this association are unknown. Given that ZNF804A upregulates the expression of COMT, we hypothesized that ZNF804A may influence brain activity by interacting with COMT. Here, we genotyped ZNF804A rs1344706 and COMT rs4680 in 218 healthy Chinese participants. Amplitudes of low-frequency fluctuations (ALFFs) were applied to analyze the main and interaction effects of ZNF804A rs1344706 and COMT rs4680. The ALFFs of the bilateral dorsolateral prefrontal cortex showed a significant ZNF804A rs1344706 × COMT rs4680 interaction, manifesting as a U-shaped modulation, presumably by dopamine signaling. Significant main effects were also found. These findings suggest that ZNF804A affects the resting-state functional activation by interacting with COMT, and may improve our understanding of the neurobiological effects of ZNF804A and its association with schizophrenia.


Subject(s)
Catechol O-Methyltransferase/genetics , Kruppel-Like Transcription Factors/genetics , Polymorphism, Single Nucleotide/genetics , Adolescent , Adult , China , Dopamine/metabolism , Female , Genetic Predisposition to Disease/genetics , Genotype , Healthy Volunteers , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Prefrontal Cortex/metabolism , Schizophrenia/genetics , Young Adult
14.
Biochemistry ; 57(5): 852-860, 2018 02 06.
Article in English | MEDLINE | ID: mdl-28994588

ABSTRACT

The relationship between the oligomeric status and functions of chemokine receptor CCR3 is still controversial. We use total internal reflection fluorescence microscopy at the single-molecule level to visualize the oligomeric status of CCR3 and its regulation of the membrane of stably transfected T-REx-293 cells. We find that the population of the dimers and oligomers of CCR3 can be modulated by the binding of ligands. Natural agonists can induce an increase in the level of dimers and oligomers at high concentrations, whereas antagonists do not have a significant influence on the oligomeric status. Moreover, monomeric CCR3 exhibits a stronger chemotactic response in the migration assay of stably transfected CCR3 cells. Together, these data support the notion that CCR3 exists as a mixture of monomers and dimers under nearly physiological conditions and the monomeric CCR3 receptor is the minimal functional unit in cellular signaling transduction. To the best of our knowledge, these results constitute the first report of the oligomeric status of CCR3 and its regulation.


Subject(s)
Microscopy, Fluorescence/methods , Receptors, CCR3/metabolism , Single Molecule Imaging/methods , Cell Line , Cell Membrane/metabolism , Chemotaxis , Dose-Response Relationship, Drug , Humans , Ligands , Photobleaching , Protein Multimerization , Receptors, CCR3/agonists , Receptors, CCR3/antagonists & inhibitors , Recombinant Proteins/metabolism , Signal Transduction
15.
BMC Immunol ; 18(1): 54, 2017 12 28.
Article in English | MEDLINE | ID: mdl-29281969

ABSTRACT

BACKGROUND: Chemokines and their cognate receptors play important role in the control of leukocyte chemotaxis, HIV entry and other inflammatory diseases. Developing an effcient method to investigate the functional expression of chemokines and its interactions with specific receptors will be helpful to asses the structural and functional characteristics as well as the design of new approach to therapeutic intervention. RESULTS: By making systematic optimization study of expression conditions, soluble and functional production of chemokine C-C motif ligand 8 (CCL8) in Escherichia coli (E. coli) has been achieved with approx. 1.5 mg protein/l culture. Quartz crystal microbalance (QCM) analysis exhibited that the purified CCL8 could bind with C-C chemokine receptor type 3 (CCR3) with dissociation equilibrium constant (K D) as 1.2 × 10-7 M in vitro. Obvious internalization of CCR3 in vivo could be detected in 1 h when exposed to 100 nM of CCL8. Compared with chemokine C-C motif ligand 11 (CCL11) and chemokine C-C motif ligand 24 (CCL24), a weaker chemotactic effect of CCR3 expressing cells was observed when induced by CCL8 with same concentration. CONCLUSION: This study delivers a simple and applicable way to produce functional chemokines in E. coli. The results clearly confirms that CCL8 can interact with chemokine receptor CCR3, therefore, it is promising area to develop drugs for the treatment of related diseases.


Subject(s)
Chemokine CCL8/metabolism , Escherichia coli/genetics , Receptors, CCR3/agonists , Chemokine CCL8/genetics , Chemotaxis , Datasets as Topic , Gene Expression , HEK293 Cells , Humans , Isopropyl Thiogalactoside , Ligands , Plasmids , Protein Binding , Recombinant Proteins/genetics
16.
Sci Rep ; 7(1): 16873, 2017 12 04.
Article in English | MEDLINE | ID: mdl-29203889

ABSTRACT

Dimerization and oligomerization of G-protein coupled receptors (GPCRs) have emerged as important characters during their trans-membrane signal transduction. However, until now the relationship between GPCR dimerization and their trans-membrane signal transduction function is still uncovered. Here, using pertussis toxin (PTX) to decouple the receptor from G protein complex and with single-molecule imaging, we show that in the presence of agonist, cells treated with PTX showed a decrease in the number of dimers and oligomers on the cell surface compared with untreated ones, which suggests that oligomeric status of CXCR4 could be significantly influenced by the decoupling of G protein complex during its signal transduction process. Moreover, with chlorpromazine (CPZ) to inhibit internalization of CXCR4, it was found that after SDF-1α stimulation, cells treated with CPZ showed more dimers and oligomers on the cell surface than untreated ones, which suggest that dimers and oligomers of CXCR4 tend to internalize more easily than monomers. Taken together, our results demonstrate that dimerization and oligomerization of CXCR4 is closely related with its G protein mediated pathway and ß-arrestin mediated internalization process, and would play an important role in regulating its signal transduction functions.


Subject(s)
Cell Membrane/metabolism , Receptors, CXCR4/metabolism , Chemokine CXCL12/metabolism , Chemotaxis/drug effects , Chlorpromazine/pharmacology , Dimerization , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HEK293 Cells , Humans , Microscopy, Fluorescence , Pertussis Toxin/pharmacology , Protein Multimerization/drug effects , Receptors, CXCR4/agonists , Receptors, CXCR4/genetics
17.
J Phys Chem B ; 121(7): 1466-1474, 2017 02 23.
Article in English | MEDLINE | ID: mdl-28118546

ABSTRACT

The role of dimerization and oligomerization of G-protein-coupled receptors in their signal transduction is highly controversial. Delineating this issue can greatly facilitate rational drug design. With single-molecule imaging, we show that chemokine receptor CXCR4 exists mainly as a monomer in normal mammalian living cells and forms dimers and higher-order oligomers at a high expression level, such as in cancer cells. Chemotaxis tests demonstrate that the signal transduction activity of CXCR4 does not depend only on its expression level, indicating a close relation with the oligomeric status of CXCR4. Moreover, binding ligands can effectively upregulate or downregulate the oligomeric level of CXCR4, which suggests that binding ligands may realize their pivotal roles by regulating the oligomeric status of CXCR4 rather than by simply inducing conformational changes.


Subject(s)
Protein Multimerization/physiology , Receptors, CXCR4/metabolism , Benzylamines , Cell Line, Transformed , Cell Line, Tumor , Chemokine CXCL12/pharmacology , Cyclams , Heterocyclic Compounds/pharmacology , Humans , Ligands , Microscopy, Fluorescence , Oligopeptides/pharmacology , Protein Multimerization/drug effects , Receptors, CXCR4/agonists , Receptors, CXCR4/chemistry
18.
ACS Appl Mater Interfaces ; 8(42): 28529-28537, 2016 Oct 26.
Article in English | MEDLINE | ID: mdl-27704754

ABSTRACT

Fluorescence imaging requires bioselective, sensitive, nontoxic molecular probes to detect the precise location of lesions for fundamental research and clinical applications. Typical inorganic semiconductor nanomaterials with large sizes (>10 nm) can offer high-quality fluorescence imaging due to their fascinating optical properties but are limited to low selectivity as well as slow clearance pathway. We here report an N- and O-rich carbogenic small molecular complex (SMC, MW < 1000 Da) that exhibits high quantum yield (up to 80%), nucleic acid-binding enhanced excitation-dependent fluorescence (EDF), and a near-infrared (NIR) emission peaked at 850 nm with an ultralarge Stokes shift (∼500 nm). SMCs show strong rRNA affinity, and the resulting EDF enhancement allows multicolor visualization of nucleoli in cells for clear statistics. Furthermore, SMCs can be efficiently accumulated in tumor in vivo after injection into tumor-bearing mice. The NIR emission affords high signal/noise ratio imaging for delineating the true extent of tumor. Importantly, about 80% of injected SMCs can be rapidly excreted from the body in 24 h. No appreciable toxicological responses were observed up to 30 days by hematological, biochemical, and pathological examinations. SMCs have great potential as a promising nucleolus- and tumor-specific agent for medical diagnoses and biomedical research.


Subject(s)
RNA/chemistry , Animals , Fluorescence , Fluorescent Dyes , Mice , Neoplasms
19.
J Mater Chem B ; 3(17): 3583-3590, 2015 May 07.
Article in English | MEDLINE | ID: mdl-32262242

ABSTRACT

Using nanotechnology, therapeutics can be combined with diagnostics for cancer treatment. To do this, a targeting ligand, an imaging contrast agent and an anti-tumour therapeutic agent were the minimum requirements for active targeting nanoassemblies. Here we have developed a novel active targeting theranostic agent, made up of just two components, aptamer AS1411 and graphene quantum dots (GQDs). Each component in our agent plays multiple roles. Confocal microscopy using a 488 nm laser shows that this agent has an excellent capability to label tumour cells selectively. On the therapeutic side, this agent induced a synergistic growth inhibition effect towards cancer cells when irradiated with a near infrared laser of 808 nm. The ultra-small size, good biocompatibility, intrinsic stable fluorescence, and near-infrared response character make GQDs a remarkable constituent to build theranostic agents.

SELECTION OF CITATIONS
SEARCH DETAIL
...