Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Med (Lausanne) ; 10: 1222973, 2023.
Article in English | MEDLINE | ID: mdl-37521345

ABSTRACT

Introduction: Post-donation renal outcomes are a crucial issue for living kidney donors considering young donors' high life expectancy and elderly donors' comorbidities that affect kidney function. We developed a prediction model for renal adaptation after living kidney donation using interpretable machine learning. Methods: The study included 823 living kidney donors who underwent nephrectomy in 2009-2020. AutoScore, a machine learning-based score generator, was used to develop a prediction model. Fair and good renal adaptation were defined as post-donation estimated glomerular filtration rate (eGFR) of ≥ 60 mL/min/1.73 m2 and ≥ 65% of the pre-donation values, respectively. Results: The mean age was 45.2 years; 51.6% were female. The model included pre-donation demographic and laboratory variables, GFR measured by diethylenetriamine pentaacetate scan, and computed tomography kidney volume/body weight of both kidneys and the remaining kidney. The areas under the receiver operating characteristic curve were 0.846 (95% confidence interval, 0.762-0.930) and 0.626 (0.541-0.712), while the areas under the precision-recall curve were 0.965 (0.944-0.978) and 0.709 (0.647-0.788) for fair and good renal adaptation, respectively. An interactive clinical decision support system was developed. Conclusion: The prediction tool for post-donation renal adaptation showed good predictive capability and may help clinical decisions through an easy-to-use web-based application.

2.
Sci Rep ; 12(1): 12454, 2022 07 21.
Article in English | MEDLINE | ID: mdl-35864281

ABSTRACT

The study aims to measure the effectiveness of an AI-based traumatic intracranial hemorrhage prediction model in the decisions of emergency physicians regarding ordering head computed tomography (CT) scans. We developed a deep-learning model for predicting traumatic intracranial hemorrhages (DEEPTICH) using a national trauma registry with 1.8 million cases. For simulation, 24 cases were selected from previous emergency department cases. For each case, physicians made decisions on ordering a head CT twice: initially without the DEEPTICH assistance, and subsequently with the DEEPTICH assistance. Of the 528 responses from 22 participants, 201 initial decisions were different from the DEEPTICH recommendations. Of these 201 initial decisions, 94 were changed after DEEPTICH assistance (46.8%). For the cases in which CT was initially not ordered, 71.4% of the decisions were changed (p < 0.001), and for the cases in which CT was initially ordered, 37.2% (p < 0.001) of the decisions were changed after DEEPTICH assistance. When using DEEPTICH, 46 (11.6%) unnecessary CTs were avoided (p < 0.001) and 10 (11.4%) traumatic intracranial hemorrhages (ICHs) that would have been otherwise missed were found (p = 0.039). We found that emergency physicians were likely to accept AI based on how they perceived its safety.


Subject(s)
Brain Injuries, Traumatic , Craniocerebral Trauma , Deep Learning , Intracranial Hemorrhage, Traumatic , Brain Injuries, Traumatic/diagnostic imaging , Child , Emergency Service, Hospital , Humans , Tomography, X-Ray Computed/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...