Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Mol Med ; 55(8): 1720-1733, 2023 08.
Article in English | MEDLINE | ID: mdl-37524868

ABSTRACT

Autophagy functions in cellular quality control and metabolic regulation. Dysregulation of autophagy is one of the major pathogenic factors contributing to the progression of nonalcoholic fatty liver disease (NAFLD). Autophagy is involved in the breakdown of intracellular lipids and the maintenance of healthy mitochondria in NAFLD. However, the mechanisms underlying autophagy dysregulation in NAFLD remain unclear. Here, we demonstrate that the hepatic expression level of Thrap3 was significantly increased in NAFLD conditions. Liver-specific Thrap3 knockout improved lipid accumulation and metabolic properties in a high-fat diet (HFD)-induced NAFLD model. Furthermore, Thrap3 deficiency enhanced autophagy and mitochondrial function. Interestingly, Thrap3 knockout increased the cytosolic translocation of AMPK from the nucleus and enhanced its activation through physical interaction. The translocation of AMPK was regulated by direct binding with AMPK and the C-terminal domain of Thrap3. Our results indicate a role for Thrap3 in NAFLD progression and suggest that Thrap3 is a potential target for NAFLD treatment.


Subject(s)
Non-alcoholic Fatty Liver Disease , Animals , Mice , AMP-Activated Protein Kinases/metabolism , Autophagy/genetics , Diet, High-Fat/adverse effects , Lipid Metabolism , Liver/metabolism , Mice, Inbred C57BL , Mitochondria/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Transcription Factors/metabolism , Humans , Hep G2 Cells
2.
J Colloid Interface Sci ; 505: 703-710, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-28658656

ABSTRACT

Chemical oxo-precipitation (COP) has become a promising method for treating boron wastewater at room temperature; it uses hydrogen peroxide to convert boric acid to perborate species, which are precipitated using alkaline earth metals. In this work, solubility models of barium perborates were established to predict residual boron levels from COP. The solubility product constants (pKsp) of two major barium perborates - amorphous Ba(B(OH)3OOH)2 (A-BaPB) and crystalline BaB(OH)2(OO)2B(OH)2 (C-BaPB) - were experimentally estimated (8.335±0.109 and 9.190±0.057, respectively) to define the solubility curves of BaPBs at given pH, ionic strength and concentrations of barium and peroxide species. The characterization of precipitates that were formed by COP confirmed that the boron levels in aqueous solution were governed by the phase transformation of A-BaPB to C-BaPB. The predictive solubility models of barium perborates can perfectly predict the residual concentration of boron after COP treatment and can be used to optimize the process for reducing boron concentrations in wastewater.

SELECTION OF CITATIONS
SEARCH DETAIL
...