Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ultrasonics ; 119: 106627, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34688981

ABSTRACT

This article reports a new mechanism involving a non-perforated resonant elastic metamaterial to achieve the complete conversion of Lamb waves (A0 and S0) into the fundamental shear horizontal (SH0) wave. The proposed metamaterial ultrasound mode convertor is studied via the observation of the special resonant shear motion of its unit cells, initiating with a conventional additive stub design. Thereafter, such a stubbed structure is further modified to fully couple the Lamb modes with the shear horizontal stub motion. By investigating the band structure of the metamaterial unit cell through modal analysis and tuning the shear resonant motions, a complete SH0 mode generation band within the simultaneous Lamb modes bandgap can be established in a wide frequency range. Such a special bandgap situation enables the complete mode conversion from Lamb waves into shear horizontal waves. The transformation capability of the proposed ultrasound mode convertor is further substantiated via the harmonic analysis of metamaterial chain model, showcasing the frequency spectrum of the transmitted wave modes. The optimal configuration is determined by conducting a parametric study to identify the most effective mode conversion performance. Finally, a coupled-field transient finite element simulation is carried out to acquire the dynamic response of the structure. The frequency-wavenumber analysis of the transmitted wave field illuminates the successful realization of the mode conversion behavior. Experimental demonstrations are presented to validate the numerical predictions. The proposed complete mode conversion capability may possess great potential for wave control and manipulation.

2.
Int J Mol Sci ; 20(18)2019 Sep 19.
Article in English | MEDLINE | ID: mdl-31546808

ABSTRACT

Salmonella, a common foodborne pathogen, causes many cases of foodborne illness and poses a threat to public health worldwide. Immunological detection systems can be combined with nanoparticles to develop sensitive and portable detection technologies for timely screening of Salmonella infections. Here, we developed an antibody-probe-based immuno-N-hydroxysuccinimide (NHS) bead (AIB) system to detect Salmonella. After adding the antibody probe, Salmonella accumulated in the samples on the surfaces of the immuno-NHS beads (INBs), forming a sandwich structure (INB-Salmonella-probes). We demonstrated the utility of our AIB diagnostic system for detecting Salmonella in water, milk, and eggs, with a sensitivity of 9 CFU mL-1 in less than 50 min. The AIB diagnostic system exhibits highly specific detection and no cross-reaction with other similar microbial strains. With no specialized equipment or technical requirements, the AIB diagnostic method can be used for visual, rapid, and point-of-care detection of Salmonella.


Subject(s)
Antibodies, Bacterial/chemistry , Antibodies, Monoclonal, Murine-Derived/chemistry , Food Microbiology , Magnetite Nanoparticles/chemistry , Salmonella/immunology , Animals , Immunoassay , Mice , Mice, Inbred BALB C , Salmonella Infections/diagnosis , Salmonella Infections/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...