Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Bioanal Chem ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38839687

ABSTRACT

Cytochrome P450 3A4 (CYP3A4) is a crucial enzyme in the metabolism of xenobiotics, particularly in drug metabolism interactions (DDIs), making it a significant factor in clinical drug use. However, current assay techniques are both laborious and costly, making it difficult to construct a high-throughput monitoring method that can be used in conjunction with the clinic. This poses certain safety hazards for drug combination. Therefore, it is crucial to develop a synchronized monitoring method for the inhibition and induction of CYP3A4. In this study, we utilized 3D culture technology to develop a HepaRG cells spheroid model. The CYP450 and transporter expression, the albumin secretion, and urea synthesis capacity characteristics were analyzed. The NEN probe was utilized as a tracer molecule for CYP3A4. The fluorescence intensity of metabolites was characterized by laser confocal technique to determine the inhibition and expression of CYP3A4 in the HepaRG cell spheroid model by the antibiotics for sepsis. The results indicate that the HepaRG sphere model successfully possessed the physiological phenotype of the liver, which could be used for drug interaction monitoring. Through positive drug testing, NEN probe was able to achieve bidirectional characterization of CYP3A4 induction and inhibition. The monitoring method described in this paper was successfully applied to drug interaction monitoring of commonly used antibiotics in sepsis patients, which is a convenient and rapid monitoring method. The proposed method offers a new strategy for monitoring CYP3A4-mediated drug-drug interactions with a high-throughput assay, which will help to improve the safety of clinical drug combination.

2.
Int J Antimicrob Agents ; 63(5): 107122, 2024 May.
Article in English | MEDLINE | ID: mdl-38431108

ABSTRACT

BACKGROUND: With increasing antibiotic resistance and regulation, the issue of antibiotic combination has been emphasised. However, antibiotic combination prescribing lacks a rapid identification of feasibility, while its risk of drug interactions is unclear. METHODS: We conducted statistical descriptions on 16 101 antibiotic coprescriptions for inpatients with bacterial infections from 2015 to 2023. By integrating the frequency and effectiveness of prescriptions, we formulated recommendations for the feasibility of antibiotic combinations. Initially, a machine learning algorithm was utilised to optimise grading thresholds and habits for antibiotic combinations. A feedforward neural network (FNN) algorithm was employed to develop antibiotic combination recommendation model (ACRM). To enhance interpretability, we combined sequential methods and DrugBank to explore the correlation between antibiotic combinations and drug interactions. RESULTS: A total of 55 antibiotics, covering 657 empirical clinical antibiotic combinations were used for ACRM construction. Model performance on the test dataset showed AUROCs of 0.589-0.895 for various antibiotic recommendation classes. The ACRM showed satisfactory clinical relevance with 61.54-73.33% prediction accuracy in a new independent retrospective cohort. Antibiotic interaction detection showed that the risk of drug interactions was 29.2% for strongly recommended and 43.5% for not recommended. A positive correlation was identified between the level of clinical recommendation and the risk of drug interactions. CONCLUSIONS: Machine learning modelling of retrospective antibiotic prescriptions habits has the potential to predict antibiotic combination recommendations. The ACRM plays a supporting role in reducing the incidence of drug interactions. Clinicians are encouraged to adopt such systems to improve the management of antibiotic usage and medication safety.


Subject(s)
Anti-Bacterial Agents , Bacterial Infections , Drug Interactions , Machine Learning , Humans , Anti-Bacterial Agents/therapeutic use , Bacterial Infections/drug therapy , Retrospective Studies , Drug Therapy, Combination , Algorithms
SELECTION OF CITATIONS
SEARCH DETAIL
...