Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 16(2): 2683-2691, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38179609

ABSTRACT

Balancing the mechanical strength and self-healing performance of polyurethane (PU) remains a significant challenge in achieving excellent self-repairing PU materials. In this study, a self-healing waterborne PU elastomer was designed from a bionic concept by incorporating 2'-deoxythymidine (2'-dT) and isophorone diamine (IPDA) into the polymer chain. The loose stacking of IPDA's irregular cycloaliphatic structure resulted in the irregular arrangement of urethane bonds in the hard domain. The formation of sextuple hydrogen bonds between 2'-dT and urethane bonds, as well as quadruple hydrogen bonds between urethane bonds themselves, enhanced the mechanical properties of the material. The multiple hydrogen bonds can dissociate, recombine, and dissipate energy, thereby improving the material's repair capability. The hierarchical self-assembly of hydrogen bonds enabled the PU to achieve a tensile strength of 15.3 MPa and toughness of 100.75 MJ/m3. The prepared PU film is highly transparent and has a transmittance of more than 90%. Additionally, it can undergo rapid repair under high temperatures or under trace solvent conditions. When used as a flexible conductive substrate, it quickly restored the conductivity and enhanced the material's lifespan after surface damage. This environmentally friendly and self-healing waterborne PU elastomer will hold broad application prospects in the field of flexible electronic devices.

2.
Gels ; 9(5)2023 May 16.
Article in English | MEDLINE | ID: mdl-37233010

ABSTRACT

Graphene oxide aerogel (GOA) has wide application prospects due to its low density and high porosity. However, the poor mechanical properties and unstable structure of GOA have limited its practical applications. In this study, polyethyleneimide (PEI) was used to graft onto the surface of GO and carbon nanotubes (CNTs) to improve compatibility with polymers. Composite GOA was prepared by adding styrene-butadiene latex (SBL) to the modified GO and CNTs. The synergistic effect of PEI and SBL, resulted in an aerogel with excellent mechanical properties, compressive resistance, and structural stability. When the ratio of SBL to GO and GO to CNTs was 2:1 and 7:3, respectively, the obtained aerogel performance was the best, and the maximum compressive stress was 784.35% higher than that of GOA. The graft of PEI on the surface of GO and CNT could improve the mechanical properties of the aerogel, with greater improvements observed with grafting onto the surface of GO. Compared with GO/CNT/SBL aerogel without PEI grafting, the maximum stress of GO/CNT-PEI/SBL aerogel increased by 5.57%, that of GO-PEI/CNT/SBL aerogel increased by 20.25%, and that of GO-PEI/CNT-PEI/SBL aerogel increased by 28.99%. This work not only provided a possibility for the practical application of aerogel, but also steered the research of GOA in a new direction.

3.
Gels ; 8(10)2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36286119

ABSTRACT

Three-dimensional (3D) graphene oxide aerogel (GOA) is one of the best fillers for composites for microwave absorption. However, its further development has been hindered by the poor mechanical properties. Methodology to improve the mechanical properties of the aerogel remains an urgent challenge. Herein, graphene oxide/carbon nanotube/epoxy resin composite aerogel (GCEA) was successfully prepared by a facile method. The results showed that the prepared GCEA with the hierarchical and 3D cross-linked structures exhibited excellent compression performance, structural and thermal stability, high hydrophilicity, and microwave absorption. The prepared GCEA recovered from multiple large strain cycles without significant permanent deformation. The minimum reflection loss (RL) was -39.60 dB and the maximum effective absorption bandwidth (EAB) was 2.48 GHz. The development of the enhanced GO aerogels will offer a new approach to the preparation of 3D microwave-absorbing skeletal materials with good mechanical properties.

SELECTION OF CITATIONS
SEARCH DETAIL
...