Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Nat Commun ; 14(1): 4006, 2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37414812

ABSTRACT

Deep learning and quantum computing have achieved dramatic progresses in recent years. The interplay between these two fast-growing fields gives rise to a new research frontier of quantum machine learning. In this work, we report an experimental demonstration of training deep quantum neural networks via the backpropagation algorithm with a six-qubit programmable superconducting processor. We experimentally perform the forward process of the backpropagation algorithm and classically simulate the backward process. In particular, we show that three-layer deep quantum neural networks can be trained efficiently to learn two-qubit quantum channels with a mean fidelity up to 96.0% and the ground state energy of molecular hydrogen with an accuracy up to 93.3% compared to the theoretical value. In addition, six-layer deep quantum neural networks can be trained in a similar fashion to achieve a mean fidelity up to 94.8% for learning single-qubit quantum channels. Our experimental results indicate that the number of coherent qubits required to maintain does not scale with the depth of the deep quantum neural network, thus providing a valuable guide for quantum machine learning applications with both near-term and future quantum devices.


Subject(s)
Computing Methodologies , Quantum Theory , Neural Networks, Computer , Algorithms , Hydrogen
2.
Nat Commun ; 13(1): 6104, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-36243719

ABSTRACT

A photonic transistor that can switch or amplify an optical signal with a single gate photon requires strong non-linear interaction at the single-photon level. Circuit quantum electrodynamics provides great flexibility to generate such an interaction, and thus could serve as an effective platform to realize a high-performance single-photon transistor. Here we demonstrate such a photonic transistor in the microwave regime. Our device consists of two microwave cavities dispersively coupled to a superconducting qubit. A single gate photon imprints a phase shift on the qubit state through one cavity, and further shifts the resonance frequency of the other cavity. In this way, we realize a gain of the transistor up to 53.4 dB, with an extinction ratio better than 20 dB. Our device outperforms previous devices in the optical regime by several orders in terms of optical gain, which indicates a great potential for application in the field of microwave quantum photonics and quantum information processing.

3.
Sci Adv ; 8(10): eabn1778, 2022 Mar 11.
Article in English | MEDLINE | ID: mdl-35275710

ABSTRACT

Schrödinger's cat originates from the famous thought experiment querying the counterintuitive quantum superposition of macroscopic objects. As a natural extension, several "cats" (quasi-classical objects) can be prepared into coherent quantum superposition states, which is known as multipartite cat states demonstrating quantum entanglement among macroscopically distinct objects. Here, we present a highly scalable approach to deterministically create flying multipartite Schrödinger's cat states by reflecting coherent-state photons from a microwave cavity containing a superconducting qubit. We perform full quantum state tomography on the cat states with up to four photonic modes and confirm the existence of quantum entanglement among them. We also witness the hybrid entanglement between discrete-variable states (the qubit) and continuous-variable states (the flying multipartite cat) through a joint quantum state tomography. Our work provides an enabling step for implementing a series of quantum metrology and quantum information processing protocols based on cat states.

4.
Phys Rev Lett ; 127(1): 010503, 2021 Jul 02.
Article in English | MEDLINE | ID: mdl-34270274

ABSTRACT

We realize on-demand storage and retrieval of weak coherent microwave photon pulses at the single-photon level. A superconducting multiresonator system which is composed of a set of frequency-tunable coplanar waveguide resonators is implemented as the quantum memory. By dynamically tuning the resonant frequencies of the resonators, we achieve tunable memory bandwidth from 10 to 55 MHz, with well preserved phase coherence. We further demonstrate on-demand storage and retrieval of a time-bin flying qubit. This result opens up a prospect to integrate our chip-based quantum memory with the state-of-the-art superconducting quantum circuit technology for quantum information processing.

5.
Sci Adv ; 5(1): eaav2761, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30746476

ABSTRACT

Generative adversarial learning is one of the most exciting recent breakthroughs in machine learning. It has shown splendid performance in a variety of challenging tasks such as image and video generation. More recently, a quantum version of generative adversarial learning has been theoretically proposed and shown to have the potential of exhibiting an exponential advantage over its classical counterpart. Here, we report the first proof-of-principle experimental demonstration of quantum generative adversarial learning in a superconducting quantum circuit. We demonstrate that, after several rounds of adversarial learning, a quantum-state generator can be trained to replicate the statistics of the quantum data output from a quantum channel simulator, with a high fidelity (98.8% on average) so that the discriminator cannot distinguish between the true and the generated data. Our results pave the way for experimentally exploring the intriguing long-sought-after quantum advantages in machine learning tasks with noisy intermediate-scale quantum devices.

6.
Sci Bull (Beijing) ; 63(5): 293-299, 2018 Mar 15.
Article in English | MEDLINE | ID: mdl-36658799

ABSTRACT

Spectroscopy is a crucial laboratory technique for understanding quantum systems through their interactions with the electromagnetic radiation. Particularly, spectroscopy is capable of revealing the physical structure of molecules, leading to the development of the maser-the forerunner of the laser. However, real-world applications of molecular spectroscopy are mostly confined to equilibrium states, due to computational and technological constraints; a potential breakthrough can be achieved by utilizing the emerging technology of quantum simulation. Here we experimentally demonstrate through a toy model, a superconducting quantum simulator capable of generating molecular spectra for both equilibrium and non-equilibrium states, reliably producing the vibronic structure of diatomic molecules. Furthermore, our quantum simulator is applicable not only to molecules with a wide range of electronic-vibronic coupling strength, characterized by the Huang-Rhys parameter, but also to molecular spectra not readily accessible under normal laboratory conditions. These results point to a new direction for predicting and understanding molecular spectroscopy, exploiting the power of quantum simulation.

7.
Sci Bull (Beijing) ; 63(23): 1551-1557, 2018 Dec 15.
Article in English | MEDLINE | ID: mdl-36751075

ABSTRACT

Universal control of quantum systems is a major goal to be achieved for quantum information processing, which demands thorough understanding of fundamental quantum mechanics and promises applications of quantum technologies. So far, most studies concentrate on ideally isolated quantum systems governed by unitary evolutions, while practical quantum systems are open and described by quantum channels due to their inevitable coupling to environment. Here, we experimentally simulate arbitrary quantum channels for an open quantum system, i.e. a single photonic qubit in a superconducting quantum circuit. The arbitrary channel simulation is achieved with minimum resource of only one ancilla qubit and measurement-based adaptive control. By repetitively implementing the quantum channel simulation, we realize an arbitrary Liouvillian for a continuous evolution of an open quantum system for the first time. Our experiment provides not only a testbed for understanding quantum noise and decoherence, but also a powerful tool for full control of practical open quantum systems.

8.
Sci Rep ; 7(1): 16485, 2017 11 28.
Article in English | MEDLINE | ID: mdl-29184077

ABSTRACT

The magnetic transition-metal (TM) @ oxide nanoparticles have been of great interest due to their wide range of applications, from medical sensors in magnetic resonance imaging to photo-catalysis. Although several studies on small clusters of TM@oxide have been reported, the understanding of the physical electronic properties of TMn@(ZnO)42 is far from sufficient. In this work, the electronic, magnetic and optical properties of TMn@(ZnO)42 (TM = Fe, Co and Ni) hetero-nanostructure are investigated using the density functional theory (DFT). It has been found that the core-shell nanostructure Fe13@(ZnO)42, Co15@(ZnO)42 and Ni15@(ZnO)42 are the most stable structures. Moreover, it is also predicted that the variation of the magnetic moment and magnetism of Fe, Co and Ni in TMn@ZnO42 hetero-nanostructure mainly stems from effective hybridization between core TM-3d orbitals and shell O-2p orbitals, and a magnetic moment inversion for Fe15@(ZnO)42 is investigated. Finally, optical properties studied by calculations show a red shift phenomenon in the absorption spectrum compared with the case of (ZnO)48.

9.
Sci Adv ; 3(5): e1603159, 2017 May.
Article in English | MEDLINE | ID: mdl-28508079

ABSTRACT

Wave-particle complementarity lies at the heart of quantum mechanics. To illustrate this mysterious feature, Wheeler proposed the delayed-choice experiment, where a quantum system manifests the wave- or particle-like attribute, depending on the experimental arrangement, which is made after the system has entered the interferometer. In recent quantum delayed-choice experiments, these two complementary behaviors were simultaneously observed with a quantum interferometer in a superposition of being closed and open. We suggest and implement a conceptually different quantum delayed-choice experiment by introducing a which-path detector (WPD) that can simultaneously record and neglect the system's path information, but where the interferometer itself is classical. Our experiment is realized with a superconducting circuit, where a cavity acts as the WPD for an interfering qubit. Using this setup, we implement the first twofold delayed-choice experiment, which demonstrates that the system's behavior depends not only on the measuring device's configuration that can be chosen even after the system has been detected but also on whether we a posteriori erase or mark the which-path information, the latter of which cannot be revealed by previous quantum delayed-choice experiments. Our results represent the first demonstration of both counterintuitive features with the same experimental setup, significantly extending the concept of quantum delayed-choice experiment.

10.
J Phys Condens Matter ; 29(21): 215002, 2017 Jun 01.
Article in English | MEDLINE | ID: mdl-28367830

ABSTRACT

The few-layer graphene quantum dot provides a promising platform for quantum computing with both spin and valley degrees of freedom. Gate-defined quantum dots in particular can avoid noise from edge disorders. In connection with the recent experimental efforts (Song et al 2016 Nano Lett. 16 6245), we investigate the bound state properties of trilayer graphene (TLG) quantum dots (QDs) through numerical simulations. We show that the valley degeneracy can be lifted by breaking the time reversal symmetry through the application of a perpendicular magnetic field. The spectrum under such a potential exhibits a transition from one group of Landau levels to another group, which can be understood analytically through perturbation theory. Our results provide insight into the transport property of TLG QDs, with possible applications to study of spin qubits and valleytronics in TLG QDs.

11.
Nano Lett ; 16(10): 6245-6251, 2016 10 12.
Article in English | MEDLINE | ID: mdl-27632023

ABSTRACT

Graphene quantum dots could be an ideal host for spin qubits and thus have been extensively investigated based on graphene nanoribbons and etched nanostructures; however, edge and substrate-induced disorders severely limit device functionality. Here, we report the confinement of quantum dots in few-layer graphene with tunable barriers, defined by local strain and electrostatic gating. Transport measurements unambiguously reveal that confinement barriers are formed by inducing a band gap via the electrostatic gating together with local strain induced constriction. Numerical simulations according to the local top-gate geometry confirm the band gap opening by a perpendicular electric field. We investigate the magnetic field dependence of the energy-level spectra in these graphene quantum dots. Experimental results reveal a complex evolution of Coulomb oscillations with the magnetic field, featuring kinks at level crossings. The simulation of energy spectrum shows that the kink features and the magnetic field dependence are consistent with experimental observations, implying the hybridized nature of energy-level spectrum of these graphene quantum dots.

12.
Nanotechnology ; 24(22): 225202, 2013 Jun 07.
Article in English | MEDLINE | ID: mdl-23633474

ABSTRACT

Effective electron mobilities are obtained by transport measurements on InAs nanowire field-effect transistors at temperatures ranging from 10 to 200 K. The mobility increases with temperatures below ∼30-50 K, and then decreases with temperatures above 50 K, consistent with other reports. The magnitude and temperature dependence of the observed mobility can be explained by Coulomb scattering from ionized surface states at typical densities. The behaviour above 50 K is ascribed to the thermally activated increase in the number of scatterers, although nanoscale confinement also plays a role as higher radial subbands are populated, leading to interband scattering and a shift of the carrier distribution closer to the surface. Scattering rate calculations using finite-element simulations of the nanowire transistor confirm that these mechanisms are able to explain the data.

13.
Nano Lett ; 8(8): 2356-61, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18616325

ABSTRACT

Single-crystal nanorods of half-metallic chromium dioxide (CrO2) were synthesized and structurally characterized. Spin-dependent electrical transport was investigated in individual CrO2 nanorod devices contacted with nonmagnetic metallic electrodes. Negative magnetoresistance (MR) was observed at low temperatures due to the spin-dependent direct tunneling through the contact barrier and the high spin polarization in the half-metallic nanorods. The magnitude of this negative magnetoresistance decreases with increasing bias voltage and temperature due to spin-independent inelastic hopping through the barrier, and a small positive magnetoresistance was found at room temperature. It is believed that the contact barrier and the surface state of the nanorods have great influence on the spin-dependent transport limiting the magnitude of MR effect in this first attempt at spin filter devices of CrO2 nanorods with nonmagnetic contacts.

14.
Nano Lett ; 7(4): 965-9, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17385935

ABSTRACT

Ultralong, single-crystal Ni2Si nanowires sheathed with amorphous silicon oxide were synthesized on a large scale by a chemical vapor transport (CVT) method, using iodine as the transport reagent and Ni2Si powder as the source material. Structural characterization using powder X-ray diffraction, electron microscopy, and energy-dispersive spectroscopy shows that the nanowires have Ni2Si-SiOx core-shell structure with single-crystal Ni2Si core and amorphous silicon oxide shell. The oxide shell is electrically insulating and can be removed by HF etching. Four-terminal electrical measurements show that the single-crystal nanowire has extremely low resistivity of 21 muOmega.cm and is capable of supporting remarkably high failure current density >108 A/cm2. These unique Ni2Si nanowires are very attractive nanoscale building blocks for interconnects and fully silicided (FUSI) gate applications in nanoelectronics.


Subject(s)
Crystallization/methods , Electric Wiring/instrumentation , Nanotechnology/instrumentation , Nanotubes/chemistry , Nanotubes/ultrastructure , Nickel/chemistry , Silicon Compounds/chemistry , Electric Impedance , Macromolecular Substances/chemistry , Materials Testing , Metals/chemistry , Molecular Conformation , Molecular Weight , Nanotechnology/methods , Particle Size , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...