Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Nanosci Nanotechnol ; 16(2): 1553-7, 2016 Feb.
Article in English | MEDLINE | ID: mdl-27433620

ABSTRACT

Three natural dyes, i.e., yellow, red, and blue, were extracted from gardenia and used as sensitizers in the assembly of rainbow dye-sensitized solar cells (DSSCs) to harvest light over a wide range of wavelengths. The adsorption characteristics, photovoltaic efficiencies, and electrochemical properties of the rainbow DSSCs were investigated. Adsorption kinetic data for the dyes were obtained in a small adsorption, chamber. The data fitted a pseudo-second-order model. The photovoltaic performance of a photo-electrode with an adsorbed mixture of the three dyes was evaluated from current-voltage measurements.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 128: 868-73, 2014 Jul 15.
Article in English | MEDLINE | ID: mdl-24709352

ABSTRACT

Two natural dyes extracted from gardenia yellow (Gardenia jasminoides) and cochineal (Dactylopius coccus) were used as sensitizers in the assembly of dye-sensitized solar cells (DSSCs) to harvest light over a wide range of wavelengths. The adsorption characteristics, electrochemical properties and photovoltaic efficiencies of the natural DSSCs were investigated. The adsorption kinetics data of the dyes were obtained in a small adsorption chamber and fitted with a pseudo-second-order model. The photovoltaic performance of a photo-electrode adsorbed with single-dye (gardenia or cochineal) or the mixture or successive adsorption of the two dyes, was evaluated from current-voltage measurements. The energy conversion efficiency of the TiO2 electrode with the successive adsorption of cochineal and gardenia dyes was 0.48%, which was enhanced compared to single-dye adsorption. Overall, a double layer of the two natural dyes as sensitizers was successfully formulated on the nanoporous TiO2 surface based on the differences in their adsorption affinities of gardenia and cochineal.


Subject(s)
Carmine/chemistry , Carmine/isolation & purification , Gardenia/chemistry , Hemiptera/chemistry , Solar Energy , Titanium/chemistry , Animals , Photochemical Processes
SELECTION OF CITATIONS
SEARCH DETAIL
...