Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Colloids Surf B Biointerfaces ; 176: 352-359, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-30658283

ABSTRACT

Starch microparticles (SMPs) of well-defined size and morphology were synthesized through pullulanase-mediated debranching of waxy maize starch followed by spontaneous re-assembly of the resulting short-chain glucan molecules in aqueous solution. Enzymatic debranching of amylopectins from native starch generated two major fractions corresponding to a smaller glucan and partially digested larger amylopectin molecules. The ratio of short-chain glucan (SCG) over partially digested amylopectin (PDAp) turned out to be the deterministic factors for the size and crystallinity of SMPs, of which the ratio could be controlled by the concentration of debranching enzyme. The PDAp fraction was closely associated with the creation of nuclei, determining the growth kinetics of SMPs which led to the formation of SMPs with a diameter ranging from 0.52.5 µm. In addition, we demonstrated that iron oxide nanoparticles (IONPs) were successfully incorporated into the starch microstructure by introducing them during the self-assembly reaction, conferring desired functionality onto the final SMPs. The incorporated IONPs rendered the SMPs an excellent magnetic sensitivity, which were successfully applied for the separation and concentration of target bacteria upon conjugation of specific antibody on the surface of SMPs. The simple processes and biocompatible nature of starch would make this approach attractive for many applications in the area of food, medicine and other related materials sciences.


Subject(s)
Glucans/chemistry , Microspheres , Starch/chemistry , Zea mays/chemistry , Glycoside Hydrolases/metabolism , Kinetics , Magnetics , Starch/chemical synthesis , Temperature , X-Ray Diffraction
2.
Food Res Int ; 99(Pt 1): 596-602, 2017 09.
Article in English | MEDLINE | ID: mdl-28784522

ABSTRACT

Even though the refrigerated dough industry is growing quickly due to the convenience and freshness of refrigerated dough over a prolonged storage period, dough syruping, which is a brownish liquid that leaches out from dough during the storage, is a quality-diminishing factor that needs to be resolved. The objectives of this study were to understand dough syruping and how it is related to structural changes in water-soluble arabinoxylan (WS-AX) and starch in wheat flours during refrigeration as well as to prevent syruping by applying exogenous cell wall polysaccharides. Dough syruping increased to 6.5, 6.9, and 17.2% in weak, strong, and jopoom wheat flours, respectively, after a 35-day storage period. The endoxylanase activity of jopoom wheat flour was substantially greater compared to other commercial flours, but the activity of this flour did not change over the whole cold storage period. The molecular size reduction of WS-AX was inversely related to the degree of dough syruping. The addition of ß-glucan, carboxymethylcellulose, and xylan effectively reduced syrup formation in jopoom wheat flour dough.


Subject(s)
Flour/analysis , Food Handling/methods , Polysaccharides/chemistry , Refrigeration/methods , Starch/chemistry , Triticum/chemistry , Polysaccharides/analysis , Starch/analysis
3.
Food Chem ; 235: 181-187, 2017 Nov 15.
Article in English | MEDLINE | ID: mdl-28554624

ABSTRACT

The quality of rice-substituted fried noodles was improved by applying interaction between pea protein isolate (PPI) and green tea extract (GTE). Radical-scavenging activities of GTE were stably maintained when exposed to acidic pH, UV light, and fluorescent light, but decreased by approximately 65% when exposed to 80°C for 168h. The RVA profiles of noodle dough showed that peak viscosity and breakdown increased significantly but that setback and final viscosity remained unchanged with 20% rice flour replacement. PPI significantly decreased the viscosity parameters of rice-supplemented dough, and the addition of GTE recovered these values significantly. The cooking loss and viscoelasticity (Rmax) of cooked rice-supplemented noodles were fully restored by combined treatment of PPI and GTE. GTE decreased the peroxide value of fried noodles by 14% after storage at 63°C for 16days. Therefore, PPI+GTE treatment has great potential for use in fried noodles owing to the reinforced network and antioxidant activity.


Subject(s)
Camellia sinensis/chemistry , Food Quality , Pisum sativum/chemistry , Plant Extracts/chemistry , Oryza , Tea
4.
J Sci Food Agric ; 96(3): 1037-43, 2016 Feb.
Article in English | MEDLINE | ID: mdl-25827339

ABSTRACT

BACKGROUND: The potential of the protein-polyphenol interaction was applied to crosslinking reinforced protein networks in gluten-free rice noodles. Specifically, inter-component interaction between soy protein isolate and extract of Acanthopanax sessiliflorus fruit (ogaja) was examined with a view to improving its quality. RESULTS: In a components-interacting model system, a mixture of soy protein isolate (SPI) and ogaja extract (OE) induced a drastic increase in absorbance at 660 nm by haze formation, while the major anthocyanin of ogaja, cyanidin-3-O-sambubioside, sparsely interacted with SPI or gelatin. Individual or combined treatment of SPI and OE on rice dough decreased all the viscosity parameters in rapid visco analysis. However, SPI-OE treatment significantly increased all the texture parameters of rice dough derived from Mixolab(®) analysis (P < 0.05). Incorporation of SPI in rice dough significantly reduced endothermic ΔH, and SPI-OE treatment further decreased this value. SPI-OE interaction significantly increased the tensile properties of cooked noodle and decreased 53.7% of cooking loss compared to the untreated rice noodle. CONCLUSION: SPI-OE treatment caused a considerable reinforcement of the network as shown by reducing cooking loss and suggested the potential for utilizing protein-polyphenol interaction for gluten-free rice noodle production.


Subject(s)
Eleutherococcus , Food Quality , Plant Extracts , Cooking , Diet, Gluten-Free , Humans , Polyphenols/chemistry , Soybean Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...