Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 24(27): 8303-8310, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38934420

ABSTRACT

The discovery of interfacial superconductivity in monolayer FeSe/oxides has spurred intensive research interest. Here we not only extend the FeSe/FeOx superconducting interface to FeSe/NdFeO3 but also establish robust interface-enhanced superconductivity at a very low doping level. Specifically, well-annealed FeSe/NdFeO3 exhibits a low doping level of 0.038-0.046 e-/Fe with a larger superconducting pairing gap without a nematic gap, indicating an enhancement of the enhanced superconducting pairing strength and suppression of nematicity by the FeSe/FeOx interface compared with those of thick FeSe films. These results improve our understanding of the roles of the oxide interface in the low-electron-doped regime.

2.
Nat Commun ; 12(1): 5926, 2021 Oct 11.
Article in English | MEDLINE | ID: mdl-34635672

ABSTRACT

Enormous enhancement of superconducting pairing temperature (Tg) to 65 K in FeSe/SrTiO3 has made it a spotlight. Despite the effort of interfacial engineering, FeSe interfaced with TiOx remains the unique case in hosting high Tg, hindering a decisive understanding on the general mechanism and ways to further improving Tg. Here we constructed a new high-Tg interface, single-layer FeSe interfaced with FeOx-terminated LaFeO3. Large superconducting gap and diamagnetic response evidence that the superconducting pairing can emerge near 80 K, highest amongst all-known interfacial superconductors. Combining various techniques, we reveal interfacial charge transfer and strong interfacial electron-phonon coupling (EPC) in FeSe/LaFeO3, showing that the cooperative pairing mechanism works beyond FeSe-TiOx. Intriguingly, the stronger interfacial EPC than that in FeSe/SrTiO3 is likely induced by the stronger interfacial bonding in FeSe/LaFeO3, and can explain the higher Tg according to recent theoretical calculations, pointing out a workable route in designing new interfaces to achieve higher Tg.

SELECTION OF CITATIONS
SEARCH DETAIL
...