Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Medicine (Baltimore) ; 101(41): e30965, 2022 Oct 14.
Article in English | MEDLINE | ID: mdl-36254042

ABSTRACT

Because burst fractures often involve damage to the column and posterior structures of the spine, the fracture block may invade the spinal canal and compress the spinal cord or the cauda equina, causing corresponding neurological dysfunction. When a thoracolumbar burst fracture is accompanied by the presence of bone in the spinal canal, whether posterior surgery requires spinal canal incision decompression is still controversial. Computed tomography images of the thoracolumbar spine of a 31-year-old male with an L1 burst fracture and Mimics 10.0 were used to establish a three-dimensional fracture model for simulating the indirect reduction process. The model was imported into Ansys 10.0 (ANSYS, Inc., Canonsburg, PA), and a 1 to 10 mm displacement was loaded 10° behind the Z-axis on the upper endplate of the L1 vertebral body to simulate position reduction and open reduction. The displacement and stress changes in the intervertebral disc, fractured vertebral body and posterior longitudinal ligament were observed during reduction. Under a displacement loaded 10° behind the Z-axis, the maximum stress in the vertebral body was concentrated on the upper disc of the injured vertebrae. The maximum displacement was in the anterior edge of the vertebral body of the injured vertebrae, and the vertebral body height and the anterior lobes were essentially restored. When the displacement load was applied in the positive Z-axis direction, the maximum displacement was in the posterior longitudinal ligament behind the injured vertebrae. Under a 6 mm load, the posterior longitudinal ligament displacement was 11.3 mm. Under an 8 mm load, this displacement significantly increased to 15.0 mm, and the vertebral stress was not concentrated on the intervertebral disc. A reduction in the thoracolumbar burst fractures by positioning and distraction allowed the injured vertebrae to be restored to normal height and kyphosis. The reduction in the posterior longitudinal ligament can push the bone block in the spinal canal into the reset space and achieve a good reset.


Subject(s)
Fractures, Bone , Fractures, Comminuted , Pedicle Screws , Spinal Fractures , Adult , Finite Element Analysis , Fracture Fixation, Internal/methods , Humans , Lumbar Vertebrae/diagnostic imaging , Lumbar Vertebrae/injuries , Lumbar Vertebrae/surgery , Male , Spinal Fractures/diagnostic imaging , Spinal Fractures/surgery , Thoracic Vertebrae/diagnostic imaging , Thoracic Vertebrae/injuries , Thoracic Vertebrae/surgery , Treatment Outcome
2.
PLoS One ; 17(8): e0273351, 2022.
Article in English | MEDLINE | ID: mdl-36006983

ABSTRACT

OBJECTIVE: The purpose of this study was to analyse the biomechanical characteristics of pedicle screws with different placement methods and diameters in the treatment of Tile C1 pelvic fractures by finite element simulation technology and to compare them with the plate fixation model to verify the effectiveness of pedicle screw fixation. METHODS: A three-dimensional digital model of a normal pelvis was obtained using computed tomography images. A finite element model of a normal pelvis containing major ligaments was built and validated (Model 1). Based on the verified normal pelvis finite element model, a Tile C1 pelvic fracture model was established (Model 2), and then a plate fixation model (Model 3) and a pedicle screw fixation model with different screw placement methods and diameters were established (Models 4-15). For all pelvic fracture fixation models, a vertical load of 500 N was applied on the upper surface of the sacrum to test the displacement and stress distribution of the pelvis in the standing state with both legs. RESULTS: The finite element simulation results showed the maximum displacement of Model 1 and Models 3-15 to be less than 1 mm. The overall maximum displacement of Models 4-15 was slightly larger than that of Model 3 (the maximum difference was 177.91×10-3 mm), but the maximum displacement of iliac bone and internal fixation in Models 4-15 was smaller than that of Model 3. The overall maximum stress (maximum stress of the ilium) and maximum stress of internal fixation in Models 4-15 were less than those in Model 3. The maximum displacement difference and maximum stress difference at the fracture of the pubic ramus between each fixed model were less than 0.01 mm and 1 MPa, respectively. The greater the diameter and number of pedicle screws were, the smaller the maximum displacement and stress of the pelvic fracture models were.The maximum displacement and stress of the pelvic fracture models of the screws placed on the injured side of the pubic region were smaller than the screws on the healthy side. CONCLUSION: Both the anterior and posterior pelvic rings are fixed with a pedicle screw rod system for treatment of Tile C1 pelvic fractures, which can obtain sufficient biomechanical stability and can be used as a suitable alternative to other implants.The greater the diameter and number of pedicle screws were, the greater the pelvic stability was, and the greater was the stability of the screws placed on the injured side of the pubic region than the screws on the healthy side.


Subject(s)
Fractures, Bone , Pedicle Screws , Pelvic Bones , Biomechanical Phenomena , Finite Element Analysis , Fracture Fixation, Internal/methods , Fractures, Bone/diagnostic imaging , Fractures, Bone/surgery , Humans , Pelvic Bones/diagnostic imaging , Pelvic Bones/surgery , Pelvis/diagnostic imaging , Pelvis/surgery , Sacrum/surgery
3.
Medicine (Baltimore) ; 97(35): e11987, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30170401

ABSTRACT

To compare the microstructure, bone quality, and the combination and penetration of cement-bone interface in tissue specimens from patients with osteoarthritis (OA) and rheumatoid arthritis (RA).A total of 80 femoral condyle tissue specimens from 20 OA patients (40 condyles) and 20 RA patients (40 condyles) who underwent total knee arthroplasty at the Department of Orthopaedics in Tengzhou Central People's Hospital were collected between January 2017 and September 2017. According to the random number table method, 20 specimens from the OA group were defined as group A, and 20 specimens in the RA group were defined as group B. The bone quality parameters were measured by micro-CT. The remaining 20 specimens in the OA group and the remaining 20 specimens in the RA group were defined as group C and group D, the cement-bone interfaces were established by the self-made bone cement compression device, and were analyzed by micro-CT.Micro-CT measurement revealed that the bone volume fraction (BV/TV), trabecular thickness (Tb.Th), and trabecular number (Tb.N) in group A were significantly higher than those in group B (all P < .05). The bone surface/bone volume (BS/BV), structure model index (SMI), trabecular separation (Tb.Sp), and degree of anisotropy (DA) in group A were significantly lower than those in group B (all P < .05). The penetration depth of bone cement in group D was significantly greater than those in group C via x-ray detection.The bone quality of OA patients is better than that of RA patients, but the combination and penetration of cement-bone interface of RA patients are better than that of OA patients. The findings advance our understanding of knee prosthesis and have important clinical implications, but they require validations in future studies with larger sample sizes.


Subject(s)
Arthritis, Rheumatoid/diagnostic imaging , Bone Cements , Bone-Implant Interface/diagnostic imaging , Femur/diagnostic imaging , Osteoarthritis/diagnostic imaging , Arthritis, Rheumatoid/surgery , Arthroplasty, Replacement, Knee , Femur/anatomy & histology , Humans , Osteoarthritis/surgery , Postoperative Period , X-Ray Microtomography
SELECTION OF CITATIONS
SEARCH DETAIL
...