Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 721
Filter
1.
Carbohydr Polym ; 339: 122216, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38823901

ABSTRACT

Low Molecular Weight Heparins (LMWHs) are well-established for use in the prevention and treatment of thrombotic diseases, and as a substitute for unfractionated heparin (UFH) due to their predictable pharmacokinetics and subcutaneous bioavailability. LMWHs are produced by various depolymerization methods from UFH, resulting in heterogeneous compounds with similar biochemical and pharmacological properties. However, the delicate supply chain of UFH and potential contamination from animal sources require new manufacturing approaches for LMWHs. Various LMWH preparation methods are emerging, such as chemical synthesis, enzymatic or chemical depolymerization and chemoenzymatic synthesis. To establish the sameness of active ingredients in both innovator and generic LMWH products, the Food and Drug Administration has implemented a stringent scientific method of equivalence based on physicochemical properties, heparin source material and depolymerization techniques, disaccharide composition and oligosaccharide mapping, biological and biochemical properties, and in vivo pharmacodynamic profiles. In this review, we discuss currently available LMWHs, potential manufacturing methods, and recent progress for manufacturing quality control of these LMWHs.


Subject(s)
Heparin, Low-Molecular-Weight , Quality Control , Heparin, Low-Molecular-Weight/chemistry , Humans , Animals , Anticoagulants/chemistry , Anticoagulants/pharmacology
2.
J Sep Sci ; 47(9-10): e2300867, 2024 May.
Article in English | MEDLINE | ID: mdl-38726736

ABSTRACT

Shengxian decoction, a traditional Chinese medicinal prescription, has been shown to alleviate doxorubicin-induced chronic heart failure. This study established an ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry method to separate and characterize the complex chemical compositions of Shengxian decoction, and the absorbed compounds in the bio-samples of the cardiotoxicity rats with chronic heart failure after its oral delivery. Note that 116 chemical compounds were identified from Shengxian decoction in vitro, 81 more than previously detected. Based on the three-dimensional data of these compounds, 28 absorbed compounds were confirmed in vivo. Network pharmacology and molecular docking experiments indicated that timosaponin B-II, timosaponin A-III, gitogenin, and 7,8-didehydrocimigenol were recognized as the key effective compounds to exert effects against doxorubicin cardiotoxicity by acting on targets such as caspase 3, cyclin-dependent kinase 1, cyclin-dependent kinase 4, receptor tyrosine-protein kinase erbB-2, and mitogen-activated protein kinase 1 in p53 and phosphatidylinositol 3-kinase-Akt signaling pathways. This study developed the understanding of the composition of Shengxian decoction for the treatment of doxorubicin cardiotoxicity, as well as a feasible strategy to elucidate the effective constituents in traditional Chinese medicines.


Subject(s)
Doxorubicin , Drugs, Chinese Herbal , Network Pharmacology , Rats, Sprague-Dawley , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/analysis , Animals , Rats , Chromatography, High Pressure Liquid , Male , Mass Spectrometry , Cardiotoxicity , Molecular Docking Simulation , Drug Combinations
3.
J Obstet Gynaecol Can ; : 102562, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38759792

ABSTRACT

OBJECTIVE: To characterize contemporary trends in the hormonal management of endometriosis in adolescent and young adult patients with biopsy-proven endometriosis. METHODS: Retrospective chart review of women aged 14-25 who underwent laparoscopy for pelvic pain with biopsy-proven endometriosis between January 2011 and September 2020 at an academic tertiary hospital system. Final sample included 91 patients with biopsy-confirmed endometriosis. RESULTS: Combined oral contraceptives (COCs) were the most common initial treatment (64% of patients). Progestin-only formulations (low- and high-dose norethindrone acetate) were offered to younger patients (age 15.9 ± 2.7 years) than those offered COCs (19.9 ± 3.3 years) and levonorgestrel intrauterine devices (LNG-IUDs) (21.9 ± 1.7 years). Current treatments varied widely and included COCs (32%), LNG-IUDs (18%), oral progestins (low- and high-dose norethindrone, medroxyprogesterone) (14%), elagolix (9%), and leuprolide (8%). Oral adjuncts to LNG-IUD were common: usually low- or high-dose norethindrone (37% of patients with an LNG-IUD), but also included progesterone, COCs, and elagolix. CONCLUSION: Oral progestins, LNG-IUDs, and COCs were the mainstay of initial treatment. Subsequent treatments varied widely and included COCs, LNG-IUDs, oral progestins, elagolix, leuprolide, and combinations of these agents. We observed that most young women switched between therapies, suggesting that a personalized approach is often used to determine treatment plans among the wide range of options currently available. This study helps define the spectrum of treatment regimens for endometriosis in adolescent females.

4.
Heliyon ; 10(9): e30005, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38694048

ABSTRACT

The impact of hyperoxia-induced brain injury in preterm infants is being increasingly investigated. However, the parameters and protocols used to study this condition in animal models lack consistency. Research is further hampered by the fact that hyperoxia exerts both direct and indirect effects on oligodendrocytes and neurons, with the precise underlying mechanisms remaining unclear. In this article, we aim to provide a comprehensive overview of the conditions used to induce hyperoxia in animal models of immature brain injury. We discuss what is known regarding the mechanisms underlying hyperoxia-induced immature brain injury, focusing on the effects on oligodendrocytes and neurons, and briefly describe therapies that may counteract the effects of hyperoxia. We also identify further studies required to fully elucidate the effects of hyperoxia on the immature brain as well as discuss the leading therapeutic options.

5.
Front Med (Lausanne) ; 11: 1357824, 2024.
Article in English | MEDLINE | ID: mdl-38737764

ABSTRACT

Premature ovarian insufficiency (POI) is a condition characterized by menstrual disturbance, subfertility, and estrogen deficiency symptoms. Women with POI have a small chance of natural conception, which may be even smaller when complicated with unilateral ovarian due to reduction of the ovarian follicular reserve. In China, acupuncture has been widely used to treat POI and POI-induced infertility, and studies have shown that acupuncture is helpful for improving ovarian function. Thread-embedding therapy is a method of acupuncture treatment development and extension, which can make the acupuncture effect last. In this article, we report a patient diagnosed with POI after unilateral oophorectomy (UO) who spontaneously conceived after thread-embedding therapy. Thread-embedding therapy may improve ovarian function in patients with POI, thereby providing a treatment strategy for infertility in patients with POI. This case report was written in accordance with the CARE guidelines.

6.
Life (Basel) ; 14(5)2024 May 07.
Article in English | MEDLINE | ID: mdl-38792616

ABSTRACT

Soil salinization poses a threat to the sustainability of agricultural production and has become a global issue. Cotton is an important cash crop and plays an important role in economic development. Salt stress has been harming the yield and quality of many crops, including cotton, for many years. In recent years, soil salinization has been increasing. It is crucial to study the mechanism of cotton salt tolerance and explore diversified materials and methods to alleviate the salt stress of cotton for the development of the cotton industry. Nanoparticles (NPs) are an effective means to alleviate salt stress. In this study, zinc oxide NPs (ZnO NPs) were sprayed on cotton leaves with the aim of investigating the intrinsic mechanism of NPs to alleviate salt stress in cotton. The results show that the foliar spraying of ZnO NPs significantly alleviated the negative effects of salt stress on hydroponic cotton seedlings, including the improvement of above-ground and root dry and fresh weight, leaf area, seedling height, and stem diameter. In addition, ZnO NPs can significantly improve the salt-induced oxidative stress by reducing the levels of MDA, H2O2, and O2- and increasing the activities of major antioxidant enzymes, such as superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT). Furthermore, RNA-seq showed that the foliar spraying of ZnO NPs could induce the expressions of CNGC, NHX2, AHA3, HAK17, and other genes, and reduce the expression of SKOR, combined with the CBL-CIPK pathway, which alleviated the toxic effect of excessive Na+ and reduced the loss of excessive K+ so that the Na+/K+ ratio was stabilized. In summary, our results indicate that the foliar application of ZnO NPs can alleviate high salt stress in cotton by adjusting the Na+/K+ ratio and regulating antioxidative ability. This provides a new strategy for alleviating the salt stress of cotton and other crops, which is conducive to the development of agriculture.

7.
mBio ; : e0350423, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38747587

ABSTRACT

Successful host tissue colonization is crucial for fungal pathogens to cause mycosis and complete the infection cycle, in which fungal cells undergo a series of morphological transition-included cellular events to combat with hosts. However, many transcription factors (TFs) and their mediated networks regulating fungal pathogen colonization of host tissue are not well characterized. Here, a TF (BbHCR1)-mediated regulatory network was identified in an insect pathogenic fungus, Beauveria bassiana, that controlled insect hemocoel colonization. BbHCR1 was highly expressed in fungal cells after reaching insect hemocoel and controlled the yeast (in vivo blastospores)-to-hyphal morphological switch, evasion of immune defense response, and fungal virulence. Comparative analysis of RNA sequencing and chromatin immunoprecipitation sequencing identified a core set of BbHCR1 target genes during hemocoel colonization, in which abaA and brlA were targeted to limit the rapid switch from blastospores to hyphae and fungal virulence. Two targets encoding hypothetical proteins, HP1 and HP2, were activated and repressed by BbHCR1, respectively, which acted as a virulence factor and repressor, respectively, suggesting that BbHCR1 activated virulence factors but repressed virulence repressors during the colonization of insect hemocoel. BbHCR1 tuned the expression of two dominant hemocoel colonization-involved metabolite biosynthetic gene clusters, which linked its regulatory role in evasion of immune response. Those functions of BbHCR1 were found to be collaboratively regulated by Fus3- and Hog1-MAP kinases via phosphorylation. These findings have drawn a regulatory network in which Fus3- and Hog1-MAP kinases phosphorylate BbHCR1, which in turn controls the colonization of insect body cavities by regulating fungal morphological transition and virulence-implicated genes.IMPORTANCEFungal pathogens adopt a series of tactics for successful colonization in host tissues, which include morphological transition and the generation of toxic and immunosuppressive molecules. However, many transcription factors (TFs) and their linked pathways that regulate tissue colonization are not well characterized. Here, we identified a TF (BbHCR1)-mediated regulatory network that controls the insect fungal pathogen, Beauveria bassiana, colonization of insect hemocoel. During these processes, BbHCR1 targeted the fungal central development pathway for the control of yeast (blastospores)-to-hyphae morphological transition, activated virulence factors, repressed virulence repressors, and tuned the expression of two dominant hemocoel colonization-involved immunosuppressive and immunostimulatory metabolite biosynthetic gene clusters. The BbHCR1 regulatory function was governed by Fus3- and Hog1-MAP kinases. These findings led to a new regulatory network composed of Fus3- and Hog1-MAP kinases and BbHCR1 that control insect body cavity colonization by regulating fungal morphological transition and virulence-implicated genes.

8.
Nanomaterials (Basel) ; 14(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38727381

ABSTRACT

Broad-area lasers (BALs) have found applications in a variety of crucial fields on account of their high output power and high energy transfer efficiency. However, they suffer from poor spatial beam quality due to multi-mode behavior along the waveguide transverse direction. In this paper, we propose a novel metasurface waveguide structure acting as a transverse mode selective back-reflector for BALs. In order to effectively inverse design such a structure, a digital adjoint algorithm is introduced to adapt the considerably large design area and the high degree of freedom. As a proof of the concept, a device structure with a design area of 40 × 20 µm2 is investigated. The simulation results exhibit high fundamental mode reflection (above 90%), while higher-order transverse mode reflections are suppressed below 0.2%. This is, to our knowledge, the largest device structure designed based on the inverse method. We exploited such a device and the method and further investigated the device's robustness and feasibility of the inverse method. The results are elaborately discussed.

9.
BMC Ecol Evol ; 24(1): 63, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38741051

ABSTRACT

The geographical and ecological patterns of morphological disparity are crucial to understand how species are assembled within communities in the context of the evolutionary history, morphological evolution and ecological interactions. However, with limited exceptions, rather few studies have been conducted on the global pattern of disparity, particularly in early land plants. Here we explored the spatial accumulation of disparity in a morphologically variable and species rich liverwort genus Frullania in order to test the hypothesis of latitude disparity gradient. We compiled a morphological data set consisting of eight continuous traits for 244 currently accepted species, and scored the species distribution into 19 floristic regions worldwide. By reconstructing the morphospace of all defined regions and comparisons, we identified a general Gondwana-Laurasia pattern of disparity in Frullania. This likely results from an increase of ecological opportunities and / or relaxed constraints towards low latitudes. The lowest disparity occurred in arid tropical regions, largely due to a high extinction rate as a consequence of paleoaridification. There was weak correlation between species diversity and disparity at different spatial scales. Furthermore, long-distance dispersal may have partially shaped the present-day distribution of Frullania disparity, given its frequency and the great contribution of widely distributed species to local morphospace. This study not only highlighted the crucial roles of paleoenvironmental changes, ecological opportunities, and efficient dispersal on the global pattern of plant disparity, but also implied its dependence on the ecological and physiological function of traits.


Subject(s)
Hepatophyta , Hepatophyta/genetics , Biological Evolution , Biodiversity , Plant Dispersal
10.
Microbiol Spectr ; 12(6): e0391423, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38742903

ABSTRACT

Porcine parvovirus (PPV) is one of the most important pathogens that cause reproductive failure in pigs. However, the pathogenesis of PPV infection remains unclear. Proteomics is a powerful tool to understand the interaction between virus and host cells. In the present study, we analyzed the proteomics of PPV-infected PK-15 cells. A total of 32 and 345 proteins were differentially expressed at the early and replication stages, respectively. Subsequent gene ontology annotation and Kyoto Encyclopedia of Genes and Genomes enrichment analysis showed these differentially expressed proteins were significantly enriched in pathways including toll-like receptor signaling pathway, tumor necrosis factor signaling pathway, and viral carcinogenesis. The expression of poly (rC) binding protein 1 (PCBP1) was observed to decrease after PPV infection. Overexpressed or silenced PCBP1 expression inhibited or promoted PPV infection. Our studies established a foundation for further exploration of the multiplication mechanism of PPV. IMPORTANCE: Porcine parvovirus (PPV) is a cause of reproductive failure in the swine industry. Our knowledge of PPV remains limited, and there is no effective treatment for PPV infection. Proteomics of PPV-infected PK-15 cells was conducted to identify differentially expressed proteins at 6 hours post-infection (hpi) and 36 hpi. Gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis showed that various pathways participate in PPV infection. Poly (rC) binding protein 1 was confirmed to inhibit PPV replication, which provided potential targets for anti-PPV infection. Our findings improve the understanding of PPV infection and pave the way for future research in this area.


Subject(s)
Parvoviridae Infections , Parvovirus, Porcine , Proteomics , RNA-Binding Proteins , Swine Diseases , Virus Replication , Parvovirus, Porcine/genetics , Parvovirus, Porcine/physiology , Animals , Swine , Cell Line , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Parvoviridae Infections/virology , Parvoviridae Infections/metabolism , Parvoviridae Infections/veterinary , Swine Diseases/virology , Swine Diseases/metabolism , Swine Diseases/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism
11.
Nanomaterials (Basel) ; 14(7)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38607106

ABSTRACT

Semiconductor lasers, characterized by their high efficiency, small size, low weight, rich wavelength options, and direct electrical drive, have found widespread application in many fields, including military defense, medical aesthetics, industrial processing, and aerospace. The mode characteristics of lasers directly affect their output performance, including output power, beam quality, and spectral linewidth. Therefore, semiconductor lasers with high output power and beam quality are at the forefront of international research in semiconductor laser science. The novel parity-time (PT) symmetry mode-control method provides the ability to selectively modulate longitudinal modes to improve the spectral characteristics of lasers. Recently, it has gathered much attention for transverse modulation, enabling the output of fundamental transverse modes and improving the beam quality of lasers. This study begins with the basic principles of PT symmetry and provides a detailed introduction to the technical solutions and recent developments in single-mode semiconductor lasers based on PT symmetry. We categorize the different modulation methods, analyze their structures, and highlight their performance characteristics. Finally, this paper summarizes the research progress in PT-symmetric lasers and provides prospects for future development.

12.
J Hazard Mater ; 470: 134113, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38565021

ABSTRACT

Photo-induced degradation of dimethylmercury (DMHg) is considered to be an important source for the generation of methylmercury (MMHg). However, studies on DMHg photodegradation are scarce, and it is even debatable about whether DMHg can be degraded in natural waters. Herein, we found that both DMHg and MMHg could be photodegraded in three natural waters collected from the Yellow River Delta, while in pure water only DMHg photodegradation occurred under visible light irradiation. The effects of different environmental factors on DMHg photodegradation were investigated, and the underlying mechanisms were elucidated by density functional theory calculations and a series of control experiments. Our findings revealed that the DMHg degradation rate was higher in the tidal creek water compared to Yellow River, Yan Lake, and purified water. NO3-, NO2-, and DOM could promote the photodegradation with DOM and NO3- showing particularly strong positive effects. Different light sources were employed, and UV light was found to be more effective in DMHg photodegradation. Moreover, MMHg was detected during the photodegradation of DMHg, confirming that the photochemical demethylation of DMHg is a source of MMHg in sunlit water. This work may provide a novel mechanistic insight into the DMHg photodegradation in natural waters and enrich the study of the global biogeochemical cycle of Hg.


Subject(s)
Methylmercury Compounds , Photolysis , Water Pollutants, Chemical , Methylmercury Compounds/chemistry , Methylmercury Compounds/analysis , Methylmercury Compounds/radiation effects , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/radiation effects , Water Pollutants, Chemical/analysis , Light , Ultraviolet Rays , Nitrates/chemistry , Nitrates/analysis , Rivers/chemistry
13.
Adv Healthc Mater ; : e2400421, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38576069

ABSTRACT

Glioblastoma (GBM), the most prevalent and aggressive primary malignant brain tumor, exhibits profound immunosuppression and demonstrates a low response rate to current immunotherapy strategies. Manganese cations (Mn2+) directly activate the cGAS/STING pathway and induce the unique catalytic synthesis of 2'3'-cGAMP to facilitate type I IFN production, thereby enhancing innate immunity. Here, a telodendrimer and Mn2+-based nanodriver (PLHM) with a small size is developed, which effectively target lymph nodes through the blood circulation and exhibit tumor-preventive effects at low doses of Mn2+ (3.7 mg kg-1). On the other hand, the PLHM nanodriver also exhibits apparent antitumor effects in GBM-bearing mice via inducing in vivo innate immune responses. The combination of PLHM with doxorubicin nanoparticles (PLHM-DOX NPs) results in superior inhibition of tumor growth in GBM-bearing mice due to the synergistic potentiation of STING pathway functionality by Mn2+ and the presence of cytoplasmic DNA. These findings demonstrate that PLHM-DOX NPs effectively stimulate innate immunity, promote dendritic cell maturation, and orchestrate cascaded infiltration of CD8 cytotoxic T lymphocytes within glioblastomas characterized by low immunogenicity. These nanodivers chelated with Mn2+ show promising potential for tumor prevention and antitumor effects on glioblastoma by activating the STING pathway.

14.
Clin Exp Hypertens ; 46(1): 2341631, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38615327

ABSTRACT

BACKGROUND: The triglyceride-glucose (TyG) index is an alternative biomarker for insulin resistance that may be connected to incident hypertension. We performed the meta-analysis to clarify the connection between TyG index and new-onset hypertension in the general population. METHODS: We recruited cohort studies that assessed the association between TyG index and the risk of hypertension in the general population by searching the databases of PubMed, EMBASE, and Web of Science (SCI) from their inception dates until July 18, 2023. The primary focus of the study was on the hazard ratio (HR) of hypertension in relation to the TyG index. The adjusted HR and 95% confidence interval (CI) were pooled by the random-effects model. Subgroup analyzes stratified by age, sex, follow-up duration, body mass index (BMI), and ethnicity were performed. RESULTS: Our analysis comprised 35 848 participants from a total of 7 cohort studies. The highest TyG index category showed a 1.51-fold greater risk of hypertension in the general population than the lowest category (HR = 1.51, 95%CI 1.26-1.80, p < .001). Consistent results were obtained using sensitivity analysis by eliminating one trial at a time (p values all <0.001). Subgroup analysis showed that the relationship between TyG index and hypertension was not substantially influenced by age, sex, BMI, participant ethnicity, and follow-up times (P for interaction all >0.05). CONCLUSIONS: Elevated TyG index significantly increased the risk of new-onset hypertension in the general population. It is necessary to conduct the research to clarify the probable pathogenic processes underpinning the link between the TyG index and hypertension.


Subject(s)
Ethnicity , Hypertension , Humans , Cohort Studies , Glucose , Hypertension/epidemiology , Triglycerides
15.
Mitochondrial DNA B Resour ; 9(4): 423-427, 2024.
Article in English | MEDLINE | ID: mdl-38586511

ABSTRACT

Lagochilus ilicifolius Bunge ex Bentham, Labiat. Gen is a perennial herb with much-branched stems native to Nei Mongol, Ningxia, Gansu, N Shaanxi. It can be used clinically as a hemostatic agent. The chloroplast genome length is 151,466 bp. It contained two inverted repeat regions of 25,660 bp each, a large single-copy region of length 82,504 bp, and a small single-copy region of length 17,642 bp. Also, the GC content is 38.6%. There were 133 genes annotated, including 88 known protein-coding genes, 37 tRNAs, and eight rRNAs. The phylogenetic tree was constructed using Bayesian method for plastome data of 29 species. The entire chloroplast genome of L. ilicifolius within the Lamiaceae is the first to reveal genetic taxonomy at the molecular level, and the new phylogenetic tree data can be used for future evolutionary studies.

16.
Pestic Biochem Physiol ; 201: 105902, 2024 May.
Article in English | MEDLINE | ID: mdl-38685224

ABSTRACT

CRF-like diuretic hormone receptor (CRF/DHR), also known as DH44R in insects, are G-protein coupled receptors (GPCRs) that play a role in regulating osmotic balance in various insect species. These receptors have the potential to be targeted for the development of insecticides. However, our understanding of the role of DHR genes in aphids, including Rhopalosiphum padi, a major wheat pest, is currently limited. In this study, we isolated and characterized two R. padi DHRs (RpDHR1 and RpDHR2). The expression levels of RpDHR1 increased after starvation and were restored after re-feeding. The expression levels of RpDHR1 gene decreased significantly 24 h after injection of dsRNA targeting the gene. Knockdown of RpDHR1 increased aphid mortality under starvation conditions (24, 36, 48 and 60 h). Under starvation and desiccation condition, the aphid mortality decreased after knockdown of RpDHR1. This is the first study to report the role of DHR genes in the starvation and desiccation response of aphids. The results suggest that RpDHR1 is involved in the resistance of R. padi to starvation and dehydration, making it a potential target for insecticide development. Novel insecticides could be created by utilizing DHR agonists to disrupt the physiological processes of insect pests.


Subject(s)
Aphids , Insect Proteins , Animals , Aphids/genetics , Aphids/physiology , Insect Proteins/genetics , Insect Proteins/metabolism , Starvation/genetics , Desiccation , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Phylogeny
17.
J Nat Prod ; 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38687877

ABSTRACT

Fungal linear polyketides, such as α-pyrones with a 6-alkenyl chain, have been a rich source of biologically active compounds. Two new (1 and 2) and four known (3-6) 6-alkenylpyrone polyketides were isolated from a marine-derived strain of the fungus Arthrinium arundinis. Their structures were determined based on extensive spectroscopic analysis. The biosynthetic gene cluster (alt) for alternapyrones was identified from A. arundinis ZSDS-F3 and validated by heterologous expression in Aspergillus nidulans A1145 ΔSTΔEM, which revealed that the cytochrome P450 monooxygenase Alt2' could convert the methyl group 26-CH3 to a carboxyl group to produce 4 from 3. Another cytochrome P450 monooxygenase, Alt3', catalyzed successive hydroxylation, epoxidation, and oxidation steps to produce 1, 2, 5, and 6 from 4. Alternapyrone G (1) not only suppressed M1 polarization in lipopolysaccharide (LPS)-stimulated BV2 microglia but also stimulated dendrite regeneration and neuronal survival after Aß treatment, suggesting alternapyrone G may be utilized as a privileged scaffold for Alzheimer's disease drug discovery.

19.
Clin Exp Rheumatol ; 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38489320

ABSTRACT

Primary Sjögren's syndrome (pSS) is an autoimmune disorder characterised by immune-driven damage to the exocrine glands, leading to diminished salivary and tear production. While the pathogenesis of pSS remains incompletely understood, its clinical presentations vary widely, and no specific treatments are currently available. Toll-like receptor 7 (TLR7) belongs to the Toll-like receptor family and is crucial for the innate immune response, notably in recognising pathogenic patterns. TLR7 is predominantly found in the endoplasmic reticulum (ER) and endosomes, where it identifies single-stranded RNA (ssRNA). Upon ligand binding, TLR7 activates the Myd88-dependent signalling cascade, eliciting an immune response.Dysregulation and variations in TLR7 expression are implicated in several autoimmune disorders. In genetically predisposed individuals, factors such as infections, endocrinological abnormality and metabolic abnormalities can cause TLR7 dysregulation, aggravating pSS symptoms and progression. While studies on TLR7 in pSS are limited, they offer insights into the disease's pathophysiological processes, vital for the treatment and prognosis. This article explores the mechanisms of TLR7 dysregulation, its involvement in pSS pathogenesis, and prospective therapeutic significance.

20.
Sensors (Basel) ; 24(5)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38475153

ABSTRACT

LiDAR has high accuracy and resolution and is widely used in various fields. In particular, phase-modulated continuous-wave (PhMCW) LiDAR has merits such as low power, high precision, and no need for laser frequency modulation. However, with decreasing signal-to-noise ratio (SNR), the noise on the signal waveform becomes so severe that the current methods to extract the time-of-flight are no longer feasible. In this paper, a novel method that uses deep neural networks to measure the pulse width is proposed. The effects of distance resolution and SNR on the performance are explored. Recognition accuracy reaches 81.4% at a 0.1 m distance resolution and the SNR is as low as 2. We simulate a scene that contains a vehicle, a tree, a house, and a background located up to 6 m away. The reconstructed point cloud has good fidelity, the object contours are clear, and the features are restored. More precisely, the three distances are 4.73 cm, 6.00 cm, and 7.19 cm, respectively, showing that the performance of the proposed method is excellent. To the best of our knowledge, this is the first work that employs a neural network to directly process LiDAR signals and to extract their time-of-flight.

SELECTION OF CITATIONS
SEARCH DETAIL
...