Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Small ; 20(29): e2312167, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38634275

ABSTRACT

3D composite electrodes have shown extraordinary promise as high mass loading electrode materials for sodium ion batteries (SIBs). However, they usually show poor rate performance due to the sluggish Na+ kinetics at the heterointerfaces of the composites. Here, a 3D MXene-reduced holey graphene oxide (MXene-RHGO) composite electrode with Ti─O─C bonding at 2D heterointerfaces of MXene and RHGO is developed. Density functional theory (DFT) calculations reveal the built-in electric fields (BIEFs) are enhanced by the formation of bridged interfacial Ti─O─C bonding, that lead to not only faster diffusion of Na+ at the heterointerfaces but also faster adsorption and migration of Na+ on the MXene surfaces. As a result, the 3D composite electrodes show impressive properties for fast Na+ storage. Under high current density of 10 mA cm-2, the 3D MXene-RHGO composite electrodes with high mass loading of 10 mg cm-2 achieve a strikingly high and stable areal capacity of 3 mAh cm-2, which is same as commercial LIBs and greatly exceeds that of most reported SIBs electrode materials. The work shows that rationally designed bonding at the heterointerfaces represents an effective strategy for promoting high mass loading 3D composites electrode materials forward toward practical SIBs applications.

2.
J Colloid Interface Sci ; 665: 711-719, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38552586

ABSTRACT

Zn anodes suffer from the formation of uncontrolled dendrites aggravated by the uneven electric field and the insulating by-product accumulation in aqueous zinc-ion batteries (AZIBs). Here, an effective strategy implemented by 1-butyl-3-methylimidazolium hydrogen sulfate (BMIHSO4) additive is proposed to synergistically tune the crystallographic orientation of zinc deposition and suppress the formation of zinc hydroxide sulfate for enhancing the reversibility on Zn anode surface. As a competing cation, BMI+ is proved to preferably adsorb on Zn-electrode compared with H2O molecules, which shields the "tip effect" and inhibits the Zn-deposition agglomerations to inducing the horizontal growth along Zn (002) crystallographic texture. Simultaneously, the protonated BMIHSO4 additives could remove the detrimental OH- in real-time to fundamentally eliminate the accumulation of 6Zn(OH)2·ZnSO4·4H2O and Zn4SO4(OH)6·H2O on Zn anode surface. Consequently, Zn anode exhibits an ultra-long cycling stability of one year (8762 h) at 0.2 mA cm-2/0.2 mAh cm-2, 3600 h at 2 mA cm-2/2 mAh cm-2 with a high plating cumulative capacity of 3.6 Ah cm-2, and a high average Coulombic efficiency of 99.6 % throughout 1000 cycles. This work of regulating Zn deposition texture combined with eliminating notorious by-products could offer a desirable way for stabilizing the Zn-anode/electrolyte interface in AZIBs.

3.
Dalton Trans ; 53(8): 3573-3578, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38284885

ABSTRACT

Improving the fast-charging capabilities and energy storage capacity of electric vehicles presents a feasible strategy for mitigating the prevalent concern of range anxiety in the market. Nanostructure electrode materials play a crucial role in this process. However, the current method of preparation is arduous and yields restricted quantities. In view of this, we have devised an innovative approach that provides convenience and efficacy, facilitating the large-scale synthesis of CoS2 nanoparticles, which exhibited exceptional performance. When the current density was 1000 mA g-1, the discharging capacity reached 760 mAh g-1 after 400 cycles. Remarkably, even at an increased current density of 5000 mA g-1, the discharging capacity of CoS2 remained at 685.5 mAh g-1. The ultra-high performance could be attributed to the specific surface area, which minimized the diffusion distance of sodium-ions during the charging and discharging processes and mitigated the extent of structural damage. Our straightforward preparation techniques facilitate the mass production and present a novel approach for the development of cost-effective and high-performing anode materials for sodium-ion batteries.

4.
Angew Chem Int Ed Engl ; 61(48): e202211626, 2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36181671

ABSTRACT

Single-crystalline Ni-rich cathode (SC-NCM) has attracted increasing interest owing to its greater capacity retention in advanced solid-state lithium batteries (SSLBs), while suffers from severe interfacial instability during cycling. Here, via atomic layer deposition, Li3 PO4 is introduced to coat SC-NCM (L-NCM), to suppress undesired side reaction and enhance interfacial stability. The dynamic degradation and surface regulation of SC-NCM are investigated inside a working SSLB by in situ atomic force microscopy (AFM). We directly observe the uneven cathode electrolyte interphase (CEI) and surface defects on pristine SC-NCM particle. Remarkably, the formed amorphous LiF-rich CEI on L-NCM maintains its initial structure upon cycling, and thus endows the battery with improved cycling stability and excellent rate capability. Such on-site tracking provides deep insights into surface mechanism and structure-reactivity correlation of SC-NCM, and thus benefits the optimizations of SSLBs.

5.
J Am Chem Soc ; 144(21): 9354-9362, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35561032

ABSTRACT

All-carbon graphdiyne (GDY)-based materials have attracted extensive attention owing to their extraordinary structures and outstanding performance in electrochemical energy storage. Straightforward insights into the interfacial evolution at GDY electrode/electrolyte interface could crucially enrich the fundamental comprehensions and inspire targeted regulations. Herein, in situ optical microscopy and atomic force microscopy monitoring of the GDY and N-doped GDY electrodes reveal the interplay between the solid electrolyte interphase (SEI) and Li deposition. The growth and continuous accumulation of the flocculent-like SEI is directly tracked at the surface of GDY electrode. Moreover, the nanoparticle-shaped SEI homogeneously propagates at the interface when N configurations are involved, providing a critical clue for the N-doping effects of stabilizing interfaces and homogenizing Li deposition. This work probes into the dynamic evolution and structure-reactivity correlation in detail, creating effective strategies for GDY-based materials optimization in lithium-ion batteries.

6.
J Am Chem Soc ; 143(2): 839-848, 2021 Jan 20.
Article in English | MEDLINE | ID: mdl-33382260

ABSTRACT

Sulfide-based solid-state electrolytes (SSEs) matched with alloy anodes are considered as promising candidates for application in all-solid-state batteries (ASSBs) to overcome the bottlenecks of the lithium (Li) anode. However, an understanding of the dynamic electrochemical processes on alloy anode in SSE is still elusive. Herein, in situ atomic force microscopy gives insights into the block-formation and stack-accumulation behaviors of Li precipitation on an Li electrode, uncovering the morphological evolution of nanoscale Li deposition/dissolution in ASSBs. Furthermore, two-dimensional Li-indium (In) alloy lamellae and the homogeneous solid electrolyte interphase (SEI) shell on the In electrode reveal the precipitation mechanism microscopically regulated by the alloy anode. The flexible and wrinkle-structure SEI shell further enables the electrode protection and inner Li accommodation upon cycles, elucidating the functional influences of SEI shell on the cycling behaviors. Such on-site tracking of the morphological evolution and dynamic mechanism provide an in-depth understanding and thus benefit the optimizations of alloy-based ASSBs.

7.
J Am Chem Soc ; 142(49): 20752-20762, 2020 Dec 09.
Article in English | MEDLINE | ID: mdl-33249846

ABSTRACT

Intensive understanding of the surface mechanism of cathode materials, such as structural evolution and chemical and mechanical stability upon charging/discharging, is crucial to design advanced solid-state lithium batteries (SSLBs) of tomorrow. Here, via in situ atomic force microscopy monitoring, we explore the dynamic evolution process at the surface of LiNi0.5Co0.2Mn0.3O2 cathode particles inside a working SSLB. The dynamic formation process of the cathode interphase layer, with an inorganic-organic hybrid structure, was real-time imaged, as well as the evolution of its mechanical property by in situ scanning of the Derjaguin-Muller-Toporov modulus. Moreover, different components of the cathode interphase layer, such as LiF, Li2CO3, and specific organic species, were identified in detailat different stages of cycling, which can be directly correlated with the impedance buildup of the battery. In addition, the transition metal migration and the formation of new phases can further exacerbate the degradation of the SSLB. A relatively stable cathode interphase is key to improving the performance of SSLBs. Our findings provide deep insights into the dynamic evolution of surface morphology, chemical components and mechanical properties of the cathode interphase layer, which are pivotal for the performance optimization of SSLBs.

8.
Angew Chem Int Ed Engl ; 59(41): 18120-18125, 2020 Oct 05.
Article in English | MEDLINE | ID: mdl-32602612

ABSTRACT

Unstable electrode/solid-state electrolyte interfaces and internal lithium dendrite penetration hamper the applications of solid-state lithium-metal batteries (SSLMBs), and the underlying mechanisms are not well understood. Herein, in situ optical microscopy provides insights into the lithium plating/stripping processes in a gel polymer electrolyte and reveals its dynamic evolution. Spherical lithium deposits evolve into moss-like and branch-shaped lithium dendrites with increasing current densities. Remarkably, the on-site-formed solid electrolyte interphase (SEI) shell on the lithium dendrite is distinctly captured after lithium stripping. Inducing an on-site-formed SEI shell with an enhanced modulus to wrap the lithium precipitation densely and uniformly can regulate dendrite-free behaviors. An in-depth understanding of lithium dendrite evolution and its functional SEI shell will aid in the optimization of SSLMBs.

9.
Chemosphere ; 255: 126917, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32387907

ABSTRACT

The hybrid nanocomposites of zero-valent iron loaded the activated carbon derived from the corn stalk (ZVI@ACCS) was prepared and used to remove the antibiotics of tetracycline (TC), oxytetracycline (OTC) and chlortetracycline (CTC) from aqueous solution. The adsorption amounts of three antibiotics (103.1 mg g-1 for CTC, 72.9 mg g-1 for OTC and 81.5 mg g-1 for TC) were sensitive to the temperature and independent of pH in the range of 4.2-7.1 at 298 K through the synergistic interactions of the electrostatic attraction, the bridging complexation and the surface complexation. The equilibrium was performed within 20 min at 298 K. The spontaneous (ΔGo<0) and endothermic (ΔHo>0) adsorption of three antibiotics onto the ZVI@ACCS nanocomposites gave a better matching (r2 > 0.99) with Langmuir and pseudo-second-order models.


Subject(s)
Tetracycline/chemistry , Water Pollutants, Chemical/chemistry , Water Purification/methods , Adsorption , Anti-Bacterial Agents , Charcoal , Chlortetracycline , Iron , Kinetics , Nanocomposites , Oxytetracycline , Water , Zea mays
10.
Nat Commun ; 10(1): 3265, 2019 Jul 22.
Article in English | MEDLINE | ID: mdl-31332198

ABSTRACT

Molybdenum disulfide is considered one of the most promising anodes for lithium-ion batteries due to its high specific capacity; however, it suffers from an unstable solid electrolyte interphase. Understanding its structural evolution and reaction mechanism upon charging/discharging is crucial for further improvements in battery performance. Herein, the interfacial processes of solid electrolyte interphase film formation and lithiation/delithiation on ultra-flat monolayer molybdenum disulfide are monitored by in situ atomic force microscopy. The live formation of ultra-thin and dense films can be induced by the use of fluoroethylene carbonate as an additive to effectively protect the anode electrodes. The evolution of the fluoroethylene carbonate-derived solid electrolyte interphase film upon cycling is quantitatively analysed. Furthermore, the formation of wrinkle-structure networks upon lithiation process is distinguished in detailed steps, and accordingly, structure-reactivity correlations are proposed. These quantitative results provide an in-depth understanding of the interfacial mechanism in molybdenum disulfide-based lithium-ion batteries.

11.
ACS Appl Mater Interfaces ; 8(46): 32031-32040, 2016 Nov 23.
Article in English | MEDLINE | ID: mdl-27933970

ABSTRACT

The dynamic interfacial growth, suppression, and dissolution of zinc dendrites have been studied with the imidazolium ionic liquids (ILs) as additives on the basis of in situ synchrotron radiation X-ray imaging. The phase contrast difference of real-time images indicates that zinc dendrites are preferentially developed on the substrate surface in the ammoniacal electrolytes. After adding imidazolium ILs, both nucleation overpotential and polarization extent increase in the order of additive-free < EMI-Cl < EMI-PF6 < EMI-TFSA < EMI-DCA. The real-time X-ray images show that the EMI-Cl can suppress zinc dendrites, but result in the formation of the loose deposits. The EMI-PF6 and EMI-TFSA additives can smooth the deposit morphology through suppressing the initiation and growth of dendritic zinc. The addition of EMI-DCA increases the number of dendrite initiation sites, whereas it decreases the growth rate of dendrites. Furthermore, the dissolution behaviors of zinc deposits are compared. The zinc dendrites show a slow dissolution process in the additive-free electrolyte, whereas zinc deposits are easily detached from the substrate in the presence of EMI-Cl, EMI-PF6, or EMI-TFSA due to the formation of the loose structure. Hence, the dependence of zinc dendrites on anions of imidazolium IL additives during both electrodeposition and dissolution processes has been elucidated. These results could provide the valuable information in perfecting the performance of zinc-based rechargeable batteries.

SELECTION OF CITATIONS
SEARCH DETAIL
...