Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biosens Bioelectron ; 260: 116431, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38815462

ABSTRACT

Accurate quantification of neurofilament lights (NfLs), a prognostic blood biomarker, is highly required to predict neurodegeneration in the presymptomatic stages of Alzheimer's disease. Here, we report self-oxygen-enriching coral structures with triphase interfaces for the label-free photocathodic detection of NfLs in blood plasma with femtomolar sensitivities and high reliability. In conventional photocathodic immunoassays, the poor solubility and sluggish diffusion rate of the dissolved oxygen serving as electron acceptors have necessitated the incorporation of additional electron acceptors or aeration procedures. To address the challenge, we designed the coral-like copper bismuth oxides (CBO) with robust solid-liquid-air contact boundaries that enrich the interfacial oxygen levels without an external aeration source. By optimally assembling the perfluorododecyltrichlorosilane (FTCS) and platinum (Pt) co-catalysts into the silver-doped CBO (Ag:CBO), the stable solid-liquid-air contact boundaries were formed within the sensor interfaces, which allowed for the abundant supply of air phase oxygen through an air pocket connected to the atmosphere. The Pt/FTCS-Ag:CBO exhibited the stable background signals independent of the dissolved oxygen fluctuations and amplified photocurrent signals by 1.76-fold, which were attributed to the elevated interfacial oxygen levels and 11.15 times-lowered mass transport resistance. Under the illumination of white light-emitting diode, the oxygen-enriching photocathodic sensor composed of Pt/FTCS-Ag:CBO conjugated with NfLs-specific antibodies precisely quantified the NfLs in plasma with a low coefficient of variation (≤2.97%), a high degree of recovery (>97.0%), and a limit of detection of 40.38 fg/mL, which was 140 times lower than the typical photocathodic sensor with diphase interfaces.


Subject(s)
Alzheimer Disease , Biosensing Techniques , Bismuth , Oxygen , Platinum , Humans , Biosensing Techniques/methods , Alzheimer Disease/blood , Alzheimer Disease/diagnosis , Bismuth/chemistry , Platinum/chemistry , Oxygen/chemistry , Oxygen/blood , Copper/chemistry , Limit of Detection , Biomarkers/blood , Silver/chemistry , Electrochemical Techniques/methods , Immunoassay/methods , Neurofilament Proteins/blood , Neurofilament Proteins/chemistry , Neurofilament Proteins/analysis , Animals
2.
Ecotoxicol Environ Saf ; 266: 115544, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37827097

ABSTRACT

The prevalence of atopic dermatitis (AD) is increasing and environmental factors are receiving attention as contributing causes. Indoor air pollutants (IAPs), especially particulate matter (PM) can alter epigenetic markers, DNA methylation (DNAm). Although DNAm-mediated epigenetic changes have been reported to modulate the pathogenesis of AD, their role at high risk of exposure to PM is still unclear. The study investigated the effects of exposure to IAPs in the development of AD and epigenetic changes through DNAm in companion atopic dogs that share indoor environment with their owners. Dogs were divided into two groups: AD (n = 47) and controls (n = 21). The IAPs concentration in each household was measured for 48 h, and a questionnaire on the residential environment was completed in all dogs. Eighteen dogs with AD and 12 healthy dogs were selected for DNAm analysis. In addition, clinical and immunological evaluations were conducted. The concentrations of PM2.5, PM10, and volatile organic compounds (VOCs) were significantly higher in the AD group. Moreover, there were more significant methylation differences in the LDLRAD4, KHSRP, and CTDSP2 genes in connection with PM10 in AD group compared to the controls. The degree of methylation of the LDLRAD4 and CTDSP2 genes was also correlated with related protein productions. The present study revealed that exposure to high indoor PM can cause epigenetic development of AD by methylation of the LDLRAD4, KHSRP, and CTDSP2 genes in dogs. Under the concept of "One Health," improving indoor environments should be considered to prevent the development of AD.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Dermatitis, Atopic , Dogs , Animals , Particulate Matter/toxicity , Particulate Matter/analysis , Environmental Exposure/analysis , Air Pollutants/toxicity , Air Pollutants/analysis , Dermatitis, Atopic/chemically induced , Dermatitis, Atopic/genetics , Epigenesis, Genetic , Air Pollution, Indoor/adverse effects , Air Pollution, Indoor/analysis , Environmental Monitoring
3.
Front Vet Sci ; 10: 1078259, 2023.
Article in English | MEDLINE | ID: mdl-36777662

ABSTRACT

Background: Autophagy was reported to play a crucial role in maintaining general and skin health. Methods: The study used a synthesized autophagy inducer (AI) (Aquatide™ cospharm Inc.; Daejeon, Korea), for evaluating the effects of autophagy on skin and hair in dogs. Twenty-two dogs with poor skin and hair which were diagnosed with canine atopic dermatitis (CAD) or pituitary-dependent hyperadrenocorticism (PDH) were included. Clinical scores using Canine Atopic Dermatitis Extent and Severity Index-04 (CADESI-04), Pruritus Visual Analog Scale (PVAS) and skin barrier function using measurement of transepidermal water loss (TEWL) were evaluated and canine keratinocytes were also used in vitro investigation of pro-inflammatory cytokines after AI treatment. Results: In the AI group, clinical scores and skin barrier function were improved at week 8 significantly compared to in the other groups. In particular, the AI significantly improved the hair surface damage at 8 weeks compared to the baseline. In vitro, the AI reduced pro-inflammatory cytokines by activating the 78-kDa glucose-regulated protein (GRP78). Conclusion: AI improve skin barrier function and hair damage and reduce pro-inflammatory cytokines by inhibiting reactive oxygen species (ROS) production in dogs.

4.
Front Vet Sci ; 10: 1078306, 2023.
Article in English | MEDLINE | ID: mdl-36816188

ABSTRACT

Introduction: House dust mites (HDM) are regarded as essential environmental allergens not only in human, but also in canine atopic dermatitis (CAD), however, there are only a few studies on the influence of indoor HDM concentration on the disease. Methods: Our study analyzed the correlation between the indoor HDM concentration, the severity of CAD, and the residential environments in client-owned 35 AD and 13 healthy dogs. We measured the extent of CAD and severity index-04 (CADESI-04), pruritus visual analog scale (PVAS), and transepidermal water loss (TEWL), indoor relative humidity (RH) and analyzed the residential environment questionnaires to evaluate AD severity. Results: The Der f 1 concentration had an inverse association with TEWL, and no association with CADESI-04 and PVAS. The Der f 1 concentration was significantly high in the group living near the green area and 40% or higher RH. Discussion: Our results suggest two possibilities: (1) Living around green areas and maintaining an appropriate indoor climate may help to improve CAD clinical symptoms. (2) The HDM may contain endotoxin and when present in high concentrations in CAD, they play a preventive role by enhancing the skin barrier function. Further studies with a larger number of dogs may help further elucidate an association between CAD and Der f 1.

SELECTION OF CITATIONS
SEARCH DETAIL
...