Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Hortic Res ; 11(5): uhae066, 2024 May.
Article in English | MEDLINE | ID: mdl-38725461

ABSTRACT

CaWRKY40 coordinately activates pepper immunity against Ralstonia solanacearum infection (RSI) and high temperature stress (HTS), forms positive feedback loops with other positive regulators and is promoted by CaWRKY27b/CaWRKY28 through physical interactions; however, whether and how it is regulated by negative regulators to function appropriately remain unclear. Herein, we provide evidence that CaWRKY40 is repressed by a SALT TOLERANCE HOMOLOG2 in pepper (CaSTH2). Our data from gene silencing and transient overexpression in pepper and epoptic overexpression in Nicotiana benthamiana plants showed that CaSTH2 acted as negative regulator in immunity against RSI and thermotolerance. Our data from BiFC, CoIP, pull down, and MST indicate that CaSTH2 interacted with CaWRKY40, by which CaWRKY40 was prevented from activating immunity or thermotolerance-related genes. It was also found that CaSTH2 repressed CaWRKY40 at least partially through blocking interaction of CaWRKY40 with CaWRKY27b/CaWRKY28, but not through directly repressing binding of CaWRKY40 to its target genes. The results of study provide new insight into the mechanisms underlying the coordination of pepper immunity and thermotolerance.

2.
Biomimetics (Basel) ; 9(2)2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38392114

ABSTRACT

To improve wheel trafficability in soft and muddy soils such as paddy fields, a bionic walking wheel is designed based on the structural morphology and movement mode of the feet of waders living in marshes and mudflats, similar to the muddy soil of paddy fields. The bionic walking wheel adopts the arrangement of double-row wheel legs and staggered arrays to imitate the walking posture of waders. The two legs move alternately, cooperate with each other, and improve the smoothness of movement. The cam inside the bionic walking wheel is used to control the movement mode of the feet. The flippers open before touching the ground to increase the contact area and reduce sinking, and the toes bend and grip the ground while touching the ground to increase traction. Multi-rigid-body dynamics software (Adams View 2020) is used to simulate the movement of the wheel during the wading process, and the movement coordination and interference between the wheel legs are analyzed. The simulation results show that there is no interference between the parts and that the movement smoothness is good. The interaction between the bionic walking wheel and muddy soil was analyzed via coupled EDEM-ADAMS simulation, and the simulation analysis and experiments were conducted and compared with those for a common paddy wheel. The results showed that the bionic walking wheel designed in this paper improved the drawbar pull by 113.56% compared with that of a common paddy wheel and had better anti-sinking performance. By analyzing the effect of toe grip on traction, it was found that the soil under the feet can be disturbed to provide greater traction when the toe is bent downward. This study provides a reference for improving the trafficability of walking mechanisms in soft and muddy soils, such as paddy fields.

3.
Animals (Basel) ; 12(19)2022 Sep 30.
Article in English | MEDLINE | ID: mdl-36230373

ABSTRACT

Pelleting experiments were carried out in this study to clarify the influence mechanism of wet-fermented soybean dregs on the forming of corn stover. The effects of addition of water or wet fermented soybean dregs on the forming quality of corn stover were comparatively studied under different corn stover particle sizes and compression displacement. The fermented soybean dregs significantly affected the relaxed density, dimensional stability coefficient, and hardness of feed pellets. The relaxed density, dimensional stability coefficient, and hardness of feed pellets increased first and then decreased with the increase of fermented soybean dregs. The forming quality of corn stover added with fermented soybean dregs was higher than that of corn stover added with the same amount of water. The mechanism allowed soybean dregs to strengthen the bonding between corn stover particles and thus improved the quality of feed pellets. A certain amount of water was favorable for corn stover pelleting, but excessive water may decrease the quality of pellets. The comprehensive analysis showed that the addition of 5-10% fermented soybean dregs to the corn stover improved the relaxed density, dimensional stability coefficient, and hardness of feed pellets by 10.76-23.51%, 7.32-15.74%, and 33.39-454.47%, respectively.

4.
Molecules ; 27(14)2022 Jul 10.
Article in English | MEDLINE | ID: mdl-35889294

ABSTRACT

To explore the drying characteristics of soybean dregs and a nondestructive moisture content test method, in this study, soybean dregs were dried with hot air (80 °C), the moisture content was measured using the drying method, water status was analyzed using low-field nuclear magnetic resonance (LF-NMR) and the moisture content prediction models were built and validated. The results revealed that the moisture contents of the soybean dregs were 0.57 and 0.01 g/g(w.b.), respectively, after drying for 5 and 7 h. The effective moisture diffusivity increased with the decrease in moisture content; it ranged from 5.27 × 10-9 to 6.96 × 10-8 m2·s-1. Soybean dregs contained bound water (T21), immobilized water (T22) and free water (T23 and T23'). With the proceeding of drying, all of the relaxation peaks shifted left until a new peak (T23') appeared; then, the structure of soybean dregs changed, and the relaxation peaks reformed, and the peak shifted left again. The peak area may predict the moisture content of soybean dregs, and the gray values of images predict the moisture contents mainly composed of free water or immobilized water. The results may provide a reference for drying of soybean dregs and a new moisture detection method.


Subject(s)
Glycine max , Water , Desiccation/methods , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy/methods
5.
RSC Adv ; 12(26): 16723-16731, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35754903

ABSTRACT

Reducing machinery surface friction resistance can improve the efficiency of energy utilization. The lotus leaf, as everyone knows, has a strong capacity for self-cleaning and hydrophobicity. In this paper, the bionic surface of the lotus leaf was prepared in large-area, and its drag reduction performance was studied by both numerical simulation and experimental analysis. Experimental results showed that the maximum drag reduction rate of the bionic surface was 6.29% which appeared at a velocity of 3 m s-1. The contact state between liquid and bionic surface changed from Cassie state to Wenzel state with the increase of water flow velocity. The surface free energies of the bionic surface and smooth surface were 1.09 mJ m-2 and 14.26 mJ m-2, respectively. In the droplet rolling experiment, the water droplet was a hemisphere when it rolled on the smooth surface, while it was an ellipsoid on the bionic surface. This study provides a theoretical basis for the structural design of bionic drag reduction surfaces, which are expected to be applied in underwater vehicles.

6.
Sci Rep ; 10(1): 12873, 2020 07 30.
Article in English | MEDLINE | ID: mdl-32732993

ABSTRACT

Underwater machinery withstands great resistance in the water, which can result in consumption of a large amount of power. Inspired by the character that loach could move quickly in mud, the drag reduction mechanism of Paramisgurnus dabryanus loach is discussed in this paper. Subjected to the compression and scraping of water and sediments, a loach could not only secrete a lubricating mucus film, but also importantly, retain its mucus well from losing rapidly through its surface micro structure. In addition, it has been found that flexible deformations can maximize the drag reduction rate. This self-adaptation characteristic can keep the drag reduction rate always at high level in wider range of speeds. Therefore, even though the part of surface of underwater machinery cannot secrete mucus, it should be designed by imitating the bionic micro-morphology to absorb and store fluid, and eventually form a self-lubrication film to reduce the resistance. In the present study, the Paramisgurnus dabryanus loach is taken as the bionic prototype to learn how to avoid or slow down the mucus loss through its body surface. This combination of the flexible and micro morphology method provides a potential reference for drag reduction of underwater machinery.

7.
Sci Rep ; 8(1): 12186, 2018 08 15.
Article in English | MEDLINE | ID: mdl-30111771

ABSTRACT

Biological surfaces with unique wettability in nature have provided an enormous innovation for scientists and engineers. More specifically, materials possessing various wetting properties have drawn considerable attention owing to their promising application prospects. Recently, great efforts have been concentrated on the researches on wetting-induced drag-reduction materials inspired by biology because of their ability to save energy. In this work, the drag-reduction characteristics of the bionic surface with delicate water-trapping microstructures of fish Ctenopharyngodon idellus scales were explored by experimental method. Firstly, the resistance of smooth surface and bionic surface experimental sample at different speeds was carefully tested through the testing system for operation resistance. Then, the contact angle (CA) of fish scale surface was measured by means of the contact angle measuring instrument. It was discovered that the bionic surface created a rewarding drag-reduction effect at a low speed, and the drag-reduction rate significantly displayed a downward trend with the increase in flow speed. Thus, when the rate was 0.66 m/s, the drag-reduction effect was at the optimum level, and the maximum drag reduction rate was 2.805%, which was in concordance with the simulated one. Furthermore, a contact angle (CA) of 11.5° appeared on the fish scale surface, exhibiting fine hydrophilic property. It further manifested the spreading-wetting phenomenon and the higher surface energy for the area of apical of fish scales, which played an important role in drag-reduction performance. This work will have a great potential in the engineering and transportation field.


Subject(s)
Animal Scales/anatomy & histology , Animal Scales/chemistry , Biometry/methods , Animals , Carps/anatomy & histology , Fishes/anatomy & histology , Hydrodynamics , Hydrophobic and Hydrophilic Interactions , Surface Properties , Water/chemistry , Wettability
SELECTION OF CITATIONS
SEARCH DETAIL
...