Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Chem Commun (Camb) ; 59(19): 2739-2742, 2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36744593

ABSTRACT

A family of planar chiral indene-fused ferrocenes were prepared through an intramolecular asymmetric C-H arylation in excellent yields (up to 99%) with excellent enantioselectivities (up to 99% ee). They were thereafter successfully transformed to chiral ferrocenyl phosphines, featuring both planar and central chiralities, in good yields (up to 83%) and excellent diastereoselectivities (up to 99% de) through highly diastereoselective phosphination. This protocol offers a general method for planar and central chiral ferrocenyl phosphines. The potential applications of the newly developed ligands were demonstrated by a Pd-catalyzed enantioselective allylic alkylation reaction, in which high enantioselectivity (92% ee) and good yield (89%) were obtained.

2.
Cell Mol Neurobiol ; 43(3): 1181-1196, 2023 Apr.
Article in English | MEDLINE | ID: mdl-35661286

ABSTRACT

Lanthanum (La) is a natural rare-earth element that can damage the central nervous system and impair learning and memory. However, its neurotoxic mechanism remains unclear. In this study, adult female rats were divided into 4 groups and given distilled water solution containing 0%, 0.125%, 0.25%, and 0.5% LaCl3, respectively, and this was done from conception to the end of the location. Their offspring rats were used to establish animal models to investigate LaCl3 neurotoxicity. Primary neurons cultured in vitro were treated with LaCl3 and infected with LKB1 overexpression lentivirus. The results showed that LaCl3 exposure resulted in abnormal axons in the hippocampus and primary cultured neurons. LaCl3 reduced the expression of LKB1, p-LKB1, STRAD and MO25 proteins, and directly or indirectly affected the expression of LKB1, leading to decreased activity of LKB1-MARK2 and LKB1-STK25-GM130 pathways. This study indicated that LaCl3 exposure could interfere with the normal effects of LKB1 in the brain and downregulate LKB1-MARK2 and LKB1-STK25-GM130 signaling pathways, resulting in abnormal axon in offspring rats.


Subject(s)
Axons , Lanthanum , Rats , Female , Animals , Lanthanum/toxicity , Rats, Wistar , Signal Transduction , Protein Serine-Threonine Kinases
4.
Food Chem Toxicol ; 161: 112831, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35090998

ABSTRACT

Lanthanum is one of REEs documented to have neurotoxicity that led to learning and memory ability impairments. However, the mechanisms underlying La-induced neurotoxicity remain largely unexplored. Autophagy is a self-balancing and self-renewal process that degrades damaged organelles and macromolecules through lysosomal pathway. Importantly, appropriate autophagy levels have protective effects against harmful stress, while excessive autophagy has been demonstrated to be implicated in neurological diseases. ER is close to mitochondria at specific sites with a reported distance of 10-30 nm. The functional domains between the two organelles, called MAM, have been associated with autophagosome synthesis. In this study, the pregnant Wistar rats were randomly divided into four groups and given distilled water solution containing 0%, 0.125%, 0.25%, and 0.5% LaCl3 for drinking during gestation and lactation. The pups were exposed to LaCl3 via the maternal placenta and three-week lactation. Experimental results showed that LaCl3 decreased spatial learning and memory ability of offspring rats, decreased tethering protein complexes expression of MAM, damaged MAM structure, up-regulated NOX4 expression which led to active ROS-AMPK-mTOR signaling pathway. Our findings suggest that decreased spatial learning and memory ability induced by LaCl3 may be related to the abnormally autophagy regulated by tethering protein complexes of MAM.


Subject(s)
Autophagy/drug effects , Gene Expression Regulation/drug effects , Hippocampus/drug effects , Lanthanum/toxicity , Mitochondrial Membranes/drug effects , Animals , Dose-Response Relationship, Drug , Female , Hippocampus/metabolism , Lactation , Male , Mitochondria , Mitochondrial Membranes/metabolism , Pregnancy , Prenatal Exposure Delayed Effects , Random Allocation , Rats , Rats, Wistar , Signal Transduction/drug effects , Spatial Learning/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...