Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Eur Radiol ; 33(3): 1526-1536, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36241918

ABSTRACT

OBJECTIVE: Screw loosening is a widely reported issue after spinal screw fixation and triggers several complications after lumbar interbody fusion. Osteoporosis is an essential risk factor for screw loosening. Hounsfield units (HU) value is a credible indicator during bone mineral density (BMD) evaluation. As compared with the general evaluation of BMD, we hypothesized that specific measurements of HU at the precise location of the future screw insertion may be a better predictor of screw loosening. METHODS: Clinical data of 56 patients treated by oblique lumbar interbody fusion (OLIF) of the L4-L5 segments with an anterior lateral single rod (ALSR) screw fixation were reviewed in this study. Vertebral bodies with ≥ 1 mm width radiolucent zones around the screw were defined as screw loosening. HU in the insertional screw positions, the central transverse plane, and the average values of three and four planes were measured. Regression analyses identified independent risk factors for screw loosening separately. The area under the receiver operating characteristic curve (AUC) was computed to evaluate predictive performance. RESULTS: The local HU values were significantly lower in the loosening group, regardless of the selected measuring methods. The AUC of screw loosening prediction was higher in the insertional screw positions' HU than other frequently used methods. CONCLUSIONS: The HU value measured in the insertional screw position is a better predictor of ALSR screw loosening than other methods. The risk of screw loosening should be reduced by optimizing the trajectory of the screw based on the measurement of HU in preoperative CT. KEY POINTS: • Osteoporosis is an essential risk factor for screw loosening, and Hounsfield units (HU) are a credible predictor during bone mineral density (BMD) evaluation. • The HU value measured in the insertional screw position is a better predictor of screw loosening than other frequently used HU measurement methods. • The risk of screw loosening might potentially be reduced by optimizing the trajectory of the screw based on the measurement of HU in preoperative CT.


Subject(s)
Osteoporosis , Spinal Fusion , Humans , Lumbar Vertebrae/diagnostic imaging , Lumbar Vertebrae/surgery , Tomography, X-Ray Computed/methods , Spinal Fusion/adverse effects , Spinal Fusion/methods , Bone Screws , Bone Density , Osteoporosis/diagnostic imaging , Retrospective Studies
2.
Front Bioeng Biotechnol ; 10: 922848, 2022.
Article in English | MEDLINE | ID: mdl-36110315

ABSTRACT

The vertebral body's Hounsfield unit (HU) value can credibly reflect patients' bone mineral density (BMD). Given that poor bone-screw integration initially triggers screw loosening and regional differences in BMD and strength in the vertebral body exist, HU in screw holding planes should better predict screw loosening. According to the stress shielding effect, the stress distribution changes in the fixation segment with BMD reduction should be related to screw loosening, but this has not been identified. We retrospectively collected the radiographic and demographic data of 56 patients treated by single-level oblique lumbar interbody fusion (OLIF) with anterior lateral single rod (ALSR) screw fixation. BMD was identified by measuring HU values in vertebral bodies and screw holding planes. Regression analyses identified independent risk factors for cranial and caudal screw loosening separately. Meanwhile, OLIF with ALSR fixation was numerically simulated; the elastic modulus of bony structures was adjusted to simulate different grades of BMD reduction. Stress distribution changes were judged by computing stress distribution in screws, bone-screw interfaces, and cancellous bones in the fixation segment. The results showed that HU reduction in vertebral bodies and screw holding planes were independent risk factors for screw loosening. The predictive performance of screw holding plane HU is better than the mean HU of vertebral bodies. Cranial screws suffer a higher risk of screw loosening, but HU was not significantly different between cranial and caudal sides. The poor BMD led to stress concentrations on both the screw and bone-screw interfaces. Biomechanical deterioration was more severe in the cranial screws than in the caudal screws. Additionally, lower stress can also be observed in fixation segments' cancellous bone. Therefore, a higher proportion of ALSR load transmission triggers stress concentration on the screw and bone-screw interfaces in patients with poor BMD. This, together with decreased bony strength in the screw holding position, contributes to screw loosening in osteoporotic patients biomechanically. The trajectory optimization of ALSR screws based on preoperative HU measurement and regular anti-osteoporosis therapy may effectively reduce the risk of screw loosening.

3.
Front Bioeng Biotechnol ; 10: 862951, 2022.
Article in English | MEDLINE | ID: mdl-35464717

ABSTRACT

The mismatch between bony endplates (BEPs) and grafted bone (GB) triggers several complications biomechanically. However, no published study has identified whether this factor increases the risk of screw loosening by deteriorating the local stress levels. This study aimed to illustrate the biomechanical effects of the mismatch between BEP and GB and the related risk of screw loosening. In this study, radiographic and demographic data of 56 patients treated by single segment oblique lumbar interbody fusion (OLIF) with anterior lateral single rod (ALSR) fixation were collected retrospectively, and the match sufficiency between BEP and GB was measured and presented as the grafted bony occupancy rate (GBOR). Data in patients with and without screw loosening were compared; regression analyses identified independent risk factors. OLIF with different GBORs was simulated in a previously constructed and validated lumbosacral model, and biomechanical indicators related to screw loosening were computed in surgical models. The radiographic review and numerical simulations showed that the coronal plane's GBOR was significantly lower in screw loosening patients both in the cranial and caudal vertebral bodies; the decrease in the coronal plane's GBOR has been proven to be an independent risk factor for screw loosening. In addition, numerical mechanical simulations showed that the poor match between BEP and GB will lead to stress concentration on both screws and bone-screw interfaces. Therefore, we can conclude that the mismatch between the BEP and GB will increase the risk of screw loosening by deteriorating local stress levels, and the increase in the GBOR by modifying the OLIF cage's design may be an effective method to optimize the patient's prognosis.

SELECTION OF CITATIONS
SEARCH DETAIL
...