Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Angew Chem Int Ed Engl ; 62(47): e202312514, 2023 11 20.
Article in English | MEDLINE | ID: mdl-37768840

ABSTRACT

Mupirocin is a clinically important antibiotic produced by a trans-AT Type I polyketide synthase (PKS) in Pseudomonas fluorescens. The major bioactive metabolite, pseudomonic acid A (PA-A), is assembled on a tetrasubstituted tetrahydropyran (THP) core incorporating a 6-hydroxy group proposed to be introduced by α-hydroxylation of the thioester of the acyl carrier protein (ACP) bound polyketide chain. Herein, we describe an in vitro approach combining purified enzyme components, chemical synthesis, isotopic labelling, mass spectrometry and NMR in conjunction with in vivo studies leading to the first characterisation of the α-hydroxylation bimodule of the mupirocin biosynthetic pathway. These studies reveal the precise timing of hydroxylation by MupA, substrate specificity and the ACP dependency of the enzyme components that comprise this α-hydroxylation bimodule. Furthermore, using purified enzyme, it is shown that the MmpA KS0 shows relaxed substrate specificity, suggesting precise spatiotemporal control of in trans MupA recruitment in the context of the PKS. Finally, the detection of multiple intermodular MupA/ACP interactions suggests these bimodules may integrate MupA into their assembly.


Subject(s)
Mupirocin , Polyketide Synthases , Polyketide Synthases/metabolism , Hydroxylation , Anti-Bacterial Agents/chemistry
2.
Angew Chem Weinheim Bergstr Ger ; 135(47): e202312514, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-38515435

ABSTRACT

Mupirocin is a clinically important antibiotic produced by a trans-AT Type I polyketide synthase (PKS) in Pseudomonas fluorescens. The major bioactive metabolite, pseudomonic acid A (PA-A), is assembled on a tetrasubstituted tetrahydropyran (THP) core incorporating a 6-hydroxy group proposed to be introduced by α-hydroxylation of the thioester of the acyl carrier protein (ACP) bound polyketide chain. Herein, we describe an in vitro approach combining purified enzyme components, chemical synthesis, isotopic labelling, mass spectrometry and NMR in conjunction with in vivo studies leading to the first characterisation of the α-hydroxylation bimodule of the mupirocin biosynthetic pathway. These studies reveal the precise timing of hydroxylation by MupA, substrate specificity and the ACP dependency of the enzyme components that comprise this α-hydroxylation bimodule. Furthermore, using purified enzyme, it is shown that the MmpA KS0 shows relaxed substrate specificity, suggesting precise spatiotemporal control of in trans MupA recruitment in the context of the PKS. Finally, the detection of multiple intermodular MupA/ACP interactions suggests these bimodules may integrate MupA into their assembly.

3.
Angew Chem Int Ed Engl ; 61(50): e202212393, 2022 12 12.
Article in English | MEDLINE | ID: mdl-36227272

ABSTRACT

Mupirocin is a clinically important antibiotic produced by Pseudomonas fluorescens NCIMB 10586 that is assembled by a complex trans-AT polyketide synthase. The polyketide fragment, monic acid, is esterified by a 9-hydroxynonanoic acid (9HN) side chain which is essential for biological activity. The ester side chain assembly is initialised from a 3-hydroxypropionate (3HP) starter unit attached to the acyl carrier protein (ACP) MacpD, but the fate of this species is unknown. Herein we report the application of NMR spectroscopy, mass spectrometry, chemical probes and in vitro assays to establish the remaining steps of 9HN biosynthesis. These investigations reveal a complex interplay between a novel iterative or "stuttering" KS-AT didomain (MmpF), the multidomain module MmpB and multiple ACPs. This work has important implications for understanding the late-stage biosynthetic steps of mupirocin and will be important for future engineering of related trans-AT biosynthetic pathways (e.g. thiomarinol).


Subject(s)
Anti-Bacterial Agents , Mupirocin , Anti-Bacterial Agents/chemistry , Acyl Carrier Protein/metabolism , Polyketide Synthases/metabolism
4.
J Nat Prod ; 85(3): 572-580, 2022 03 25.
Article in English | MEDLINE | ID: mdl-35170975

ABSTRACT

Three new polyketide-derived natural products, cladobotric acids G-I (1-3), and six known metabolites (4, 5, 8-11) were isolated from fermentation of the fungus Cladobotryum sp. grown on rice. Their structures were elucidated by extensive spectroscopic methods. Two metabolites, cladobotric acid A (4) and pyrenulic acid A (10), were converted to a series of new products (12-20) by semisynthesis. The antibacterial activities of all these compounds were investigated against the Gram-positive pathogen Staphylococcus aureus including methicillin-susceptible (MSSA), methicillin-resistant and vancomycin-intermediate (MRSA/VISA), and heterogeneous vancomycin-intermediate (hVISA) strains. Results of these antibacterial assays revealed structural features of the unsaturated decalins important for biological activity.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Anti-Bacterial Agents/pharmacology , Humans , Microbial Sensitivity Tests , Vancomycin
5.
Angew Chem Weinheim Bergstr Ger ; 134(50): e202212393, 2022 Dec 12.
Article in English | MEDLINE | ID: mdl-38505625

ABSTRACT

Mupirocin is a clinically important antibiotic produced by Pseudomonas fluorescens NCIMB 10586 that is assembled by a complex trans-AT polyketide synthase. The polyketide fragment, monic acid, is esterified by a 9-hydroxynonanoic acid (9HN) side chain which is essential for biological activity. The ester side chain assembly is initialised from a 3-hydroxypropionate (3HP) starter unit attached to the acyl carrier protein (ACP) MacpD, but the fate of this species is unknown. Herein we report the application of NMR spectroscopy, mass spectrometry, chemical probes and in vitro assays to establish the remaining steps of 9HN biosynthesis. These investigations reveal a complex interplay between a novel iterative or "stuttering" KS-AT didomain (MmpF), the multidomain module MmpB and multiple ACPs. This work has important implications for understanding the late-stage biosynthetic steps of mupirocin and will be important for future engineering of related trans-AT biosynthetic pathways (e.g. thiomarinol).

6.
ACS Chem Biol ; 15(2): 494-503, 2020 02 21.
Article in English | MEDLINE | ID: mdl-31977176

ABSTRACT

Mupirocin, a commercially available antibiotic produced by Pseudomonas fluorescens NCIMB 10586, and thiomarinol, isolated from the marine bacterium Pseudoalteromonas sp. SANK 73390, both consist of a polyketide-derived monic acid homologue esterified with either 9-hydroxynonanoic acid (mupirocin, 9HN) or 8-hydroxyoctanoic acid (thiomarinol, 8HO). The mechanisms of formation of these deceptively simple 9HN and 8HO fatty acid moieties in mup and tml, respectively, remain unresolved. To define starter unit generation, the purified mupirocin proteins MupQ, MupS, and MacpD and their thiomarinol equivalents (TmlQ, TmlS and TacpD) have been expressed and shown to convert malonyl coenzyme A (CoA) and succinyl CoA to 3-hydroxypropionoyl (3-HP) or 4-hydroxybutyryl (4-HB) fatty acid starter units, respectively, via the MupQ/TmlQ catalyzed generation of an unusual bis-CoA/acyl carrier protein (ACP) thioester, followed by MupS/TmlS catalyzed reduction. Mix and match experiments show MupQ/TmlQ to be highly selective for the correct CoA. MacpD/TacpD were interchangeable but alternate trans-acting ACPs from the mupirocin pathway (MacpA/TacpA) or a heterologous ACP (BatA) were nonfunctional. MupS and TmlS selectivity was more varied, and these reductases differed in their substrate and ACP selectivity. The solution structure of MacpD determined by NMR revealed a C-terminal extension with partial helical character that has been shown to be important for maintaining high titers of mupirocin. We generated a truncated MacpD construct, MacpD_T, which lacks this C-terminal extension but retains an ability to generate 3-HP with MupS and MupQ, suggesting further downstream roles in protein-protein interactions for this region of the ACP.


Subject(s)
Acyl Carrier Protein/chemistry , Anti-Bacterial Agents/chemical synthesis , Bacterial Proteins/chemistry , Mupirocin/analogs & derivatives , Mupirocin/chemical synthesis , Oxidoreductases/chemistry , Acyl Carrier Protein/isolation & purification , Anti-Bacterial Agents/biosynthesis , Bacterial Proteins/isolation & purification , Mupirocin/biosynthesis , Oxidoreductases/isolation & purification , Pseudoalteromonas/enzymology , Pseudomonas fluorescens/enzymology , Substrate Specificity
7.
Chem Sci ; 11(42): 11570-11578, 2020 Oct 07.
Article in English | MEDLINE | ID: mdl-34094403

ABSTRACT

Maleidrides are a class of bioactive secondary metabolites unique to filamentous fungi, which contain one or more maleic anhydrides fused to a 7-, 8- or 9- membered carbocycle (named heptadrides, octadrides and nonadrides respectively). Herein structural and biosynthetic studies on the antifungal octadride, zopfiellin, and nonadrides scytalidin, deoxyscytalidin and castaneiolide are described. A combination of genome sequencing, bioinformatic analyses, gene disruptions, biotransformations, isotopic feeding studies, NMR and X-ray crystallography revealed that they share a common biosynthetic pathway, diverging only after the nonadride deoxyscytalidin. 5-Hydroxylation of deoxyscytalidin occurs prior to ring contraction in the zopfiellin pathway of Diffractella curvata. In Scytalidium album, 6-hydroxylation - confirmed as being catalysed by the α-ketoglutarate dependent oxidoreductase ScyL2 - converts deoxyscytalidin to scytalidin, in the final step in the scytalidin pathway. Feeding scytalidin to a zopfiellin PKS knockout strain led to the production of the nonadride castaneiolide and two novel ring-open maleidrides.

8.
Chem Sci ; 11(20): 5221-5226, 2020 May 09.
Article in English | MEDLINE | ID: mdl-34122978

ABSTRACT

With growing understanding of the underlying pathways of polyketide biosynthesis, along with the continual expansion of the synthetic biology toolkit, it is becoming possible to rationally engineer and fine-tune the polyketide biosynthetic machinery for production of new compounds with improved properties such as stability and/or bioactivity. However, engineering the pathway to the thiomarinol antibiotics has proved challenging. Here we report that genes from a marine Pseudoalternomonas sp. producing thiomarinol can be expressed in functional form in the biosynthesis of the clinically important antibiotic mupirocin from the soil bacterium Pseudomonas fluorescens. It is revealed that both pathways employ the same unusual mechanism of tetrahydropyran (THP) ring formation and the enzymes are cross compatible. Furthermore, the efficiency of downstream processing of 10,11-epoxy versus 10,11-alkenic metabolites are comparable. Optimisation of the fermentation conditions in an engineered strain in which production of pseudomonic acid A (with the 10,11-epoxide) is replaced by substantial titres of the more stable pseudomonic acid C (with a 10,11-alkene) pave the way for its development as a more stable antibiotic with wider applications than mupirocin.

9.
Chem Sci ; 10(1): 233-238, 2019 Jan 07.
Article in English | MEDLINE | ID: mdl-30746079

ABSTRACT

Two new dihydroxy-xanthone metabolites, agnestins A and B, were isolated from Paecilomyces variotii along with a number of related benzophenones and xanthones including monodictyphenone. The structures were elucidated by NMR analyses and X-ray crystallography. The agnestin (agn) biosynthetic gene cluster was identified and targeted gene disruptions of the PKS, Baeyer-Villiger monooxygenase, and other oxido-reductase genes revealed new details of fungal xanthone biosynthesis. In particular, identification of a reductase responsible for in vivo anthraquinone to anthrol conversion confirms a previously postulated essential step in aromatic deoxygenation of anthraquinones, e.g. emodin to chrysophanol.

10.
Sci Rep ; 9(1): 1542, 2019 02 07.
Article in English | MEDLINE | ID: mdl-30733464

ABSTRACT

The mupirocin trans-AT polyketide synthase pathway, provides a model system for manipulation of antibiotic biosynthesis. Its final phase involves removal of the tertiary hydroxyl group from pseudomonic acid B, PA-B, producing the fully active PA-A in a complex series of steps. To further clarify requirements for this conversion, we fed extracts containing PA-B to mutants of the producer strain singly deficient in each mup gene. This additionally identified mupM and mupN as required plus the sequence but not enzymic activity of mupL and ruled out need for other mup genes. A plasmid expressing mupLMNOPVCFU + macpE together with a derivative of the producer P. fluorescens strain NCIMB10586 lacking the mup cluster allowed conversion of PA-B to PA-A. MupN converts apo-mAcpE to holo-form while MupM is a mupirocin-resistant isoleucyl tRNA synthase, preventing self-poisoning. Surprisingly, the expression plasmid failed to allow the closely related P. fluorescens strain SBW25 to convert PA-B to PA-A.


Subject(s)
Anti-Bacterial Agents/metabolism , Mupirocin/biosynthesis , Pseudomonas fluorescens/metabolism , Anti-Bacterial Agents/chemistry , Bacillus subtilis/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Escherichia coli/genetics , Mupirocin/chemistry , Mutagenesis , Plasmids/genetics , Plasmids/metabolism , Polyketide Synthases/genetics , Polyketide Synthases/metabolism , Polyketides/chemistry , Polyketides/metabolism , Pseudomonas fluorescens/genetics
11.
Chembiochem ; 19(8): 836-841, 2018 04 16.
Article in English | MEDLINE | ID: mdl-29363252

ABSTRACT

The addition or removal of hydroxy groups modulates the activity of many pharmacologically active biomolecules. It can be integral to the basic biosynthetic factory or result from associated tailoring steps. For the anti-MRSA antibiotic mupirocin, removal of a C8-hydroxy group late in the biosynthetic pathway gives the active pseudomonic acid A. An extra hydroxylation, at C4, occurs in the related but more potent antibiotic thiomarinol A. We report here in vivo and in vitro studies that show that the putative non-haem-iron(II)/α-ketoglutaratedependent dioxygenase TmuB, from the thiomarinol cluster, 4-hydroxylates various pseudomonic acids whereas C8-OH, and other substituents around the tetrahydropyran ring, block enzyme action but not substrate binding. Molecular modelling suggested a basis for selectivity, but mutation studies had a limited ability to rationally modify TmuB substrate specificity. 4-Hydroxylation had opposite effects on the potency of mupirocin and thiomarinol. Thus, TmuB can be added to the toolbox of polyketide tailoring technologies for the in vivo generation of new antibiotics in the future.


Subject(s)
Anti-Bacterial Agents/pharmacology , Mixed Function Oxygenases/antagonists & inhibitors , Polyketide Synthases/drug effects , Anti-Bacterial Agents/chemistry , Hydroxylation , Polyketide Synthases/metabolism , Substrate Specificity
12.
Chem Sci ; 8(9): 6196-6201, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28989652

ABSTRACT

Kalimantacin A and batumin exhibit potent and selective antibiotic activity against Staphylococcus species including MRSA. Both compounds are formed via a hybrid polyketide synthase/non-ribosomal peptide synthetase (PKS-NRPS) biosynthetic pathway and from comparison of the gene clusters it is apparent that batumin from Pseudomonas batumici and kalimantacin from P. fluorescens are the same compound. The linear structure of this unsaturated acid was assigned by spectroscopic methods, but the relative and absolute stereochemistry of the five stereocentres remained unknown. Herein we describe isolation of kalimantacin A and two further metabolites 17,19-diol 2 and 27-descarbomyl hydroxyketone 3 from cultures of P. fluorescens. Their absolute and relative stereochemistries are rigorously determined using a multidisciplinary approach combining natural product degradation and fragment synthesis with bioinformatics and NMR spectroscopy. Diol 2 has the 5R, 15S, 17S, 19R, 26R, 27R configuration and is the immediate biosynthetic precursor of the bioactive kalimantacin A formed by oxidation of the 17-alcohol to the ketone.

13.
Angew Chem Int Ed Engl ; 56(14): 3930-3934, 2017 03 27.
Article in English | MEDLINE | ID: mdl-28181382

ABSTRACT

Thiomarinol and mupirocin are assembled on similar polyketide/fatty acid backbones and exhibit potent antibiotic activity against methicillin-resistant Staphylococcus aureus (MRSA). They both contain a tetrasubstituted tetrahydropyran (THP) ring that is essential for biological activity. Mupirocin is a mixture of pseudomonic acids (PAs). Isolation of the novel compound mupirocin P, which contains a 7-hydroxy-6-keto-substituted THP, from a ΔmupP strain and chemical complementation experiments confirm that the first step in the conversion of PA-B into the major product PA-A is oxidation at the C6 position. In addition, nine novel thiomarinol (TM) derivatives with different oxidation patterns decorating the central THP core were isolated after gene deletion (tmlF). These metabolites are in accord with the THP ring formation and elaboration in thiomarinol following a similar order to that found in mupirocin biosynthesis, despite the lack of some of the equivalent genes. Novel mupirocin-thiomarinol hybrids were also synthesized by mutasynthesis.


Subject(s)
Anti-Bacterial Agents/pharmacology , Methicillin-Resistant Staphylococcus aureus/drug effects , Mupirocin/analogs & derivatives , Mupirocin/pharmacology , Polyketide Synthases/genetics , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/metabolism , Microbial Sensitivity Tests , Molecular Conformation , Mupirocin/biosynthesis , Mupirocin/chemistry , Mutation , Polyketide Synthases/metabolism
14.
Chem Sci ; 6(8): 4837-4845, 2015 Aug 01.
Article in English | MEDLINE | ID: mdl-29142718

ABSTRACT

The ACE1 and RAP1 genes from the avirulence signalling gene cluster of the rice blast fungus Magnaporthe oryzae were expressed in Aspergillus oryzae and M. oryzae itself. Expression of ACE1 alone produced a polyenyl pyrone (magnaporthepyrone), which is regioselectively epoxidised and hydrolysed to give different diols, 6 and 7, in the two host organisms. Analysis of the three introns present in ACE1 determined that A. oryzae does not process intron 2 correctly, while M. oryzae processes all introns correctly in both appressoria and mycelia. Co-expression of ACE1 and RAP1 in A. oryzae produced an amide 8 which is similar to the PKS-NRPS derived backbone of the cytochalasans. Biological testing on rice leaves showed that neither the diols 6 and 7, nor amide 8 was responsible for the observed ACE1 mediated avirulence, however, gene cluster analysis suggests that the true avirulence signalling compound may be a tyrosine-derived cytochalasan compound.

15.
J Am Chem Soc ; 136(14): 5501-7, 2014 Apr 09.
Article in English | MEDLINE | ID: mdl-24625190

ABSTRACT

Mupirocin, a clinically important antibiotic produced via a trans-AT Type I polyketide synthase (PKS) in Pseudomonas fluorescens, consists of a mixture of mainly pseudomonic acids A, B, and C. Detailed metabolic profiling of mutant strains produced by systematic inactivation of PKS and tailoring genes, along with re-feeding of isolated metabolites to mutant stains, has allowed the isolation of a large number of novel metabolites, identification of the 10,11-epoxidase, and full characterization of the mupirocin biosynthetic pathway, which proceeds via major (10,11-epoxide) and minor (10,11-alkene) parallel pathways.


Subject(s)
Mupirocin/biosynthesis , Polyketide Synthases/metabolism , Pseudomonas fluorescens/enzymology , Molecular Conformation , Mupirocin/chemistry , Polyketide Synthases/genetics , Pseudomonas fluorescens/metabolism
16.
Nat Chem Biol ; 9(11): 685-692, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24056399

ABSTRACT

Type I polyketide synthases often use programmed ß-branching, via enzymes of a 'hydroxymethylglutaryl-CoA synthase (HCS) cassette', to incorporate various side chains at the second carbon from the terminal carboxylic acid of growing polyketide backbones. We identified a strong sequence motif in acyl carrier proteins (ACPs) where ß-branching is known to occur. Substituting ACPs confirmed a correlation of ACP type with ß-branching specificity. Although these ACPs often occur in tandem, NMR analysis of tandem ß-branching ACPs indicated no ACP-ACP synergistic effects and revealed that the conserved sequence motif forms an internal core rather than an exposed patch. Modeling and mutagenesis identified ACP helix III as a probable anchor point of the ACP-HCS complex whose position is determined by the core. Mutating the core affects ACP functionality, whereas ACP-HCS interface substitutions modulate system specificity. Our method for predicting ß-carbon branching expands the potential for engineering new polyketides and lays a basis for determining specificity rules.


Subject(s)
Acyl Carrier Protein/chemistry , Acyl Carrier Protein/metabolism , Conserved Sequence , Hydroxymethylglutaryl-CoA Synthase/metabolism , Polyketides/metabolism , Acyl Carrier Protein/genetics , Amino Acid Motifs , Models, Molecular , Molecular Conformation , Polyketides/chemistry
17.
Chem Commun (Camb) ; 48(72): 9023-5, 2012 Sep 18.
Article in English | MEDLINE | ID: mdl-22573241

ABSTRACT

The application of accurate quantitative NOE-distance determination allows the relative stereochemical elucidation of conformationally flexible arugosin C some 39 years after its original report in the literature.


Subject(s)
Benzoxepins/chemistry , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Conformation , Stereoisomerism
18.
Proc Natl Acad Sci U S A ; 109(20): 7642-7, 2012 May 15.
Article in English | MEDLINE | ID: mdl-22508998

ABSTRACT

A gene cluster encoding the biosynthesis of the fungal tropolone stipitatic acid was discovered in Talaromyces stipitatus (Penicillium stipitatum) and investigated by targeted gene knockout. A minimum of three genes are required to form the tropolone nucleus: tropA encodes a nonreducing polyketide synthase which releases 3-methylorcinaldehyde; tropB encodes a FAD-dependent monooxygenase which dearomatizes 3-methylorcinaldehyde via hydroxylation at C-3; and tropC encodes a non-heme Fe(II)-dependent dioxygenase which catalyzes the oxidative ring expansion to the tropolone nucleus via hydroxylation of the 3-methyl group. The tropA gene was characterized by heterologous expression in Aspergillus oryzae, whereas tropB and tropC were successfully expressed in Escherichia coli and the purified TropB and TropC proteins converted 3-methylorcinaldehyde to a tropolone in vitro. Finally, knockout of the tropD gene, encoding a cytochrome P450 monooxygenase, indicated its place as the next gene in the pathway, probably responsible for hydroxylation of the 6-methyl group. Comparison of the T. stipitatus tropolone biosynthetic cluster with other known gene clusters allows clarification of important steps during the biosynthesis of other fungal compounds including the xenovulenes, citrinin, sepedonin, sclerotiorin, and asperfuranone.


Subject(s)
Ascomycota/genetics , Ascomycota/metabolism , Biosynthetic Pathways/physiology , Multigene Family/genetics , Tropolone/metabolism , Aspergillus oryzae , Biosynthetic Pathways/genetics , Chromatography, Liquid , Computational Biology , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Dioxygenases/genetics , Dioxygenases/metabolism , Escherichia coli , Gene Knockout Techniques , Mass Spectrometry , Multigene Family/physiology , Oxygenases/genetics , Oxygenases/metabolism , Polyketide Synthases/genetics , Polyketide Synthases/metabolism , Transformation, Genetic
19.
J Am Chem Soc ; 133(41): 16635-41, 2011 Oct 19.
Article in English | MEDLINE | ID: mdl-21899331

ABSTRACT

The mechanism of programming of iterative highly reducing polyketide synthases remains one of the key unsolved problems of secondary metabolism. We conducted rational domain swaps between the polyketide synthases encoding the biosynthesis of the closely related compounds tenellin and desmethylbassianin. Expression of the hybrid synthetases in Aspergillus oryzae led to the production of reprogrammed compounds in which the changes to the methylation pattern and chain length could be mapped to the domain swaps. These experiments reveal for the first time the origin of programming in these systems. Domain swaps combined with coexpression of two cytochrome P450 encoding genes from the tenellin biosynthetic gene cluster led to the resurrection of the extinct metabolite bassianin.


Subject(s)
Aspergillus oryzae/enzymology , Polyketide Synthases/metabolism , Models, Molecular , Oxidation-Reduction , Polyketide Synthases/chemistry , Pyridones/chemistry , Pyridones/metabolism
20.
PLoS One ; 6(3): e18031, 2011 Mar 31.
Article in English | MEDLINE | ID: mdl-21483852

ABSTRACT

BACKGROUND: Understanding how complex antibiotics are synthesised by their producer bacteria is essential for creation of new families of bioactive compounds. Thiomarinols, produced by marine bacteria belonging to the genus Pseudoalteromonas, are hybrids of two independently active species: the pseudomonic acid mixture, mupirocin, which is used clinically against MRSA, and the pyrrothine core of holomycin. METHODOLOGY/PRINCIPAL FINDINGS: High throughput DNA sequencing of the complete genome of the producer bacterium revealed a novel 97 kb plasmid, pTML1, consisting almost entirely of two distinct gene clusters. Targeted gene knockouts confirmed the role of these clusters in biosynthesis of the two separate components, pseudomonic acid and the pyrrothine, and identified a putative amide synthetase that joins them together. Feeding mupirocin to a mutant unable to make the endogenous pseudomonic acid created a novel hybrid with the pyrrothine via "mutasynthesis" that allows inhibition of mupirocin-resistant isoleucyl-tRNA synthetase, the mupirocin target. A mutant defective in pyrrothine biosynthesis was also able to incorporate alternative amine substrates. CONCLUSIONS/SIGNIFICANCE: Plasmid pTML1 provides a paradigm for combining independent antibiotic biosynthetic pathways or using mutasynthesis to develop a new family of hybrid derivatives that may extend the effective use of mupirocin against MRSA.


Subject(s)
Anti-Bacterial Agents/biosynthesis , Biosynthetic Pathways/physiology , Pseudoalteromonas/metabolism , Biosynthetic Pathways/genetics , Lactams/metabolism , Methicillin-Resistant Staphylococcus aureus , Microbial Sensitivity Tests , Molecular Structure , Mupirocin/biosynthesis , Plasmids/genetics , Pseudoalteromonas/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...