Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 14: 1100838, 2023.
Article in English | MEDLINE | ID: mdl-36818875

ABSTRACT

Drought stress is a major environmental hazard. Stomatal development is highly responsive to abiotic stress and has been used as a cellular marker for drought-tolerant crop selection. C3 and C4 crops have evolved into different photosynthetic systems and physiological responses to water deficits. The genome sequences of maize, sorghum, and sugarcane make it possible to explore the association of the stomatal response to drought stress with the evolution of the key stomatal regulators. In this study, phylogenic analysis, gene expression analysis and stomatal assay under drought stress were used to investigate the drought tolerance of C3 and C4 plants. Our data shows that C3 and C4 plants exhibit different drought responses at the cellular level. Drought represses the growth and stomatal development of C3 crops but has little effect on that of C4 plants. In addition, stomatal development is unresponsive to drought in drought-tolerant C3 crops but is repressed in drought-tolerant C4 plants. The different developmental responses to drought in C3 and C4 plants might be associated with the divergent expression of their SPEECHLESS genes. In particular, C4 crops have evolved to generate multiple SPEECHLESS homologs with different genetic structure and expression levels. Our research provides not only molecular evidence that supports the evolutionary history of C4 from C3 plants but also a possible molecular model that controls the cellular response to abiotic stress in C3 and C4 crops.

2.
Article in English | MEDLINE | ID: mdl-36435453

ABSTRACT

The palm family (Arecaceae), consisting of ∼ 2600 species, is the third most economically important family of plants. The African oil palm (Elaeis guineensis) is one of the most important palms. However, the genome sequences of palms that are currently available are still limited and fragmented. Here, we report a high-quality chromosome-level reference genome of an oil palm, Dura, assembled by integrating long reads with ∼ 150נgenome coverage. The assembled genome was 1.7 Gb in size, covering 94.5% of the estimated genome, of which 91.6% were assigned into 16 pseudochromosomes and 73.7% were repetitive sequences. Relying on the conserved synteny with oil palm, the existing draft genome sequences of both date palm and coconut were further assembled into chromosomal level. Transposon burst, particularly long terminal repeat retrotransposons, following the last whole-genome duplication, likely explains the genome size variation across palms. Sequence analysis of the VIRESCENS gene in palms suggests that DNA variations in this gene are related to fruit colors. Recent duplications of highly tandemly repeated pathogenesis-related proteins from the same tandem arrays play an important role in defense responses to Ganoderma. Whole-genome resequencing of both ancestral African and introduced oil palms in Southeast Asia reveals that genes under putative selection are notably associated with stress responses, suggesting adaptation to stresses in the new habitat. The genomic resources and insights gained in this study could be exploited for accelerating genetic improvement and understanding the evolution of palms.

3.
Int J Mol Sci ; 23(9)2022 Apr 22.
Article in English | MEDLINE | ID: mdl-35563049

ABSTRACT

Oil palm is the most productive oil producing plant. Salt stress leads to growth damage and a decrease in yield of oil palm. However, the physiological responses of oil palm to salt stress and their underlying mechanisms are not clear. RNA-Seq was conducted on control and leaf samples from young palms challenged under three levels of salts (100, 250, and 500 mM NaCl) for 14 days. All three levels of salt stress activated EgSPCH expression and increased stomatal density of oil palm. Around 41% of differential expressed genes (DEGs) were putative EgSPCH binding target and were involved in multiple bioprocesses related to salt response. Overexpression of EgSPCH in Arabidopsis increased the stomatal production and lowered the salt tolerance. These data indicate that, in oil palm, salt activates EgSPCH to generate more stomata in response to salt stress, which differs from herbaceous plants. Our results might mirror the difference of salt-induced stomatal development between ligneous and herbaceous crops.


Subject(s)
Arabidopsis , Gene Expression Regulation, Plant , Arabidopsis/genetics , Plant Leaves/genetics , Plant Stomata/genetics , Salt Stress/physiology , Salt Tolerance/genetics , Stress, Physiological/genetics
4.
Plant Commun ; 3(4): 100326, 2022 07 11.
Article in English | MEDLINE | ID: mdl-35605203

ABSTRACT

Chia (Salvia hispanica) is a functional food crop for humans. Although its seeds contain high omega-3 fatty acids, the seed yield of chia is still low. Genomic resources available for this plant are limited. We report the first high-quality chromosome-level genome sequence of chia. The assembled genome size was 347.6 Mb and covered 98.1% of the estimated genome size. A total of 31 069 protein-coding genes were predicted. The absence of recent whole-genome duplication and the relatively low intensity of transposable element expansion in chia compared to its sister species contribute to its small genome size. Transcriptome sequencing and gene duplication analysis reveal that the expansion of the fab2 gene family is likely to be related to the high content of omega-3 in seeds. The white seed coat color is determined by a single locus on chromosome 4. This study provides novel insights into the evolution of Salvia species and high omega-3 content, as well as valuable genomic resources for genetic improvement of important commercial traits of chia and its related species.


Subject(s)
Fatty Acids, Omega-3 , Salvia , Chromosomes , Fatty Acids, Omega-3/genetics , Humans , Salvia/genetics , Seeds/genetics
5.
Curr Biol ; 28(8): 1273-1280.e3, 2018 04 23.
Article in English | MEDLINE | ID: mdl-29628371

ABSTRACT

Environmental factors shape the phenotypes of multicellular organisms. The production of stomata-the epidermal pores required for gas exchange in plants-is highly plastic and provides a powerful platform to address environmental influence on cell differentiation [1-3]. Rising temperatures are already impacting plant growth, a trend expected to worsen in the near future [4]. High temperature inhibits stomatal production, but the underlying mechanism is not known [5]. Here, we show that elevated temperature suppresses the expression of SPEECHLESS (SPCH), the basic-helix-loop-helix (bHLH) transcription factor that serves as the master regulator of stomatal lineage initiation [6, 7]. Our genetic and expression analyses indicate that the suppression of SPCH and stomatal production is mediated by the bHLH transcription factor PHYTOCHROME-INTERACTING FACTOR 4 (PIF4), a core component of high-temperature signaling [8]. Importantly, we demonstrate that, upon exposure to high temperature, PIF4 accumulates in the stomatal precursors and binds to the promoter of SPCH. In addition, we find SPCH feeds back negatively to the PIF4 gene. We propose a model where warm-temperature-activated PIF4 binds and represses SPCH expression to restrict stomatal production at elevated temperatures. Our work identifies a molecular link connecting high-temperature signaling and stomatal development and reveals a direct mechanism by which production of a specific cell lineage can be controlled by a broadly expressed environmental signaling factor.


Subject(s)
Arabidopsis Proteins/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Plant Stomata/metabolism , Arabidopsis/metabolism , Arabidopsis Proteins/physiology , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/physiology , Cell Differentiation , Cell Lineage , Gene Expression Regulation, Plant/genetics , Hot Temperature , Phytochrome/metabolism , Plant Development , Plant Stomata/physiology , Signal Transduction , Temperature , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...