Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
Environ Sci Technol ; 58(28): 12697-12707, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38956762

ABSTRACT

Transforming dissolved organic matter (DOM) is a crucial approach to alleviating the formation of disinfection byproducts (DBPs) in water treatment. Although catalytic ozonation effectively transforms DOM, increases in DBP formation potential are often observed due to the accumulation of aldehydes, ketones, and nitro compound intermediates during DOM transformation. In this study, we propose a novel strategy for the sequential oxidation of DOM, effectively reducing the levels of accumulation of these intermediates. This is achieved through the development of a catalyst with a tailored surface and nanoconfined active sites for catalytic ozonation. The catalyst features a unique confinement structure, wherein Mn-N4 moieties are uniformly anchored on the catalyst surface and within nanopores (5-20 Å). This design enables the degradation of the large molecular weight fraction of DOM on the catalyst surface, while the transformed smaller molecular weight fraction enters the nanopores and undergoes rapid degradation due to the confinement effect. The generation of *Oad as the dominant reactive species is essential for effectively reducing these ozone refractory intermediates. This resulted in over 70% removal of carbonaceous and nitrogenous DBP precursors as well as brominated DBP precursors. This study highlights the importance of the nanoscale sequential reactor design and provides new insights into eliminating DBP precursors by the catalytic ozonation process.


Subject(s)
Disinfection , Ozone , Water Purification , Ozone/chemistry , Catalysis , Water Purification/methods , Water Pollutants, Chemical/chemistry
2.
Food Chem Toxicol ; 190: 114842, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38942164

ABSTRACT

High levels of reactive oxygen species (ROS) have been associated with the progression of neurodegenerative diseases such as Alzheimer's disease. The activation of the NFE2-related factor 2 (Nrf2)/antioxidant response element (ARE) signaling pathway may restore the neuron's redox balance and provide a therapeutic impact. Hydroxygenkwanin (HGK), a dominant flavone from Genkwa Flos, has received expanding attention due to its medicinal activities. Our investigation results demonstrated the ability of HGK to protect the PC12 cells from oxidative damage caused by an excessive hydrogen peroxide load. HGK also showed the ability to upregulate a panel of endogenous antioxidant proteins. Further investigations have demonstrated that the neuroprotection mechanism of HGK is dependent on the activation of the Nrf2/ARE signaling pathway. Activating the Nrf2/ARE pathway by HGK reveals a novel mechanism for understanding the pharmacological functions of HGK. These findings suggest that HGK could be considered for further development as an oxidative stress-related neurological pathologies potential therapeutic drug.


Subject(s)
Antioxidant Response Elements , NF-E2-Related Factor 2 , Neuroprotective Agents , Oxidative Stress , Signal Transduction , NF-E2-Related Factor 2/metabolism , Animals , Neuroprotective Agents/pharmacology , Signal Transduction/drug effects , PC12 Cells , Rats , Antioxidant Response Elements/drug effects , Oxidative Stress/drug effects , Hydrogen Peroxide , Flavones/pharmacology , Reactive Oxygen Species/metabolism
3.
Biochem Pharmacol ; 225: 116306, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38782076

ABSTRACT

Fibroblast growth factor 21 (FGF21) has promise for treating diabetes and its associated comorbidities. It has been found to reduce blood glucose in mice and humans; however, its underlying mechanism is not known. Here, the metabolic function of FGF21 in diabetes was investigated. Diabetic db/db mice received intraperitoneal injections of FGF21 for 28 days, the serum of each mouse was collected, and their metabolites were analyzed by untargeted metabolomics using UHPLC-MS/MS. It was found that FGF21 reduced blood glucose and oral glucose tolerance without causing hypoglycemia. Moreover, administration of FGF21 reduced the levels of TG and LDL levels while increasing those of HDL and adiponectin. Importantly, the levels of 45 metabolites, including amino acids and lipids, were significantly altered, suggesting their potential as biomarkers. We speculated that FGF21 may treat T2DM through the regulation of fatty acid biosynthesis, the TCA cycle, and vitamin digestion and absorption. These findings provide insight into the mechanism of FGF21 in diabetes and suggest its potential for treating diabetes.


Subject(s)
Diabetes Mellitus, Type 2 , Fibroblast Growth Factors , Metabolomics , Fibroblast Growth Factors/metabolism , Fibroblast Growth Factors/blood , Animals , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/blood , Metabolomics/methods , Mice , Male , Blood Glucose/metabolism , Blood Glucose/drug effects , Mice, Inbred C57BL , Hypoglycemic Agents/therapeutic use , Hypoglycemic Agents/administration & dosage , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/blood
4.
Sci Rep ; 14(1): 3822, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38360874

ABSTRACT

Physics-informed neural networks (PINNs) are employed to solve the classical compressible flow problem in a converging-diverging nozzle. This problem represents a typical example described by the Euler equations, a thorough understanding of which serves as a guide for solving more general compressible flows. Given a geometry of the channel, analytical solutions for the steady states do indeed exist, and they depend on the ratio between the back pressure of the outlet and the stagnation pressure of the inlet. Moreover, in the diverging region, the solution may branch into subsonic flow, supersonic flow, or a mixture of both with a discontinuous transition where a normal shock occurs. Classical numerical schemes with shock fitting and capturing methods have been developed to solve this type of problem effectively, whereas the original PINNs are unable to predict the flows correctly. We make a first attempt to exploit the power of PINNs to solve this problem directly by adjusting the weights of different components of the loss function to acquire physical solutions and in the meantime, avoid trivial solutions. With a universal setting yet no exogenous data, we are able to solve this problem accurately; that is, for different given pressure ratios, PINNs provide different branches of solutions at both steady and unsteady states, some of which are discontinuous in nature. For an inverse problem such as unknown specific-heat ratio, it works effectively as well.

5.
Sensors (Basel) ; 24(4)2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38400379

ABSTRACT

In multi-finger coordinated keystroke actions by professional pianists, movements are precisely regulated by multiple motor neural centers, exhibiting a certain degree of coordination in finger motions. This coordination enhances the flexibility and efficiency of professional pianists' keystrokes. Research on the coordination of keystrokes in professional pianists is of great significance for guiding the movements of piano beginners and the motion planning of exoskeleton robots, among other fields. Currently, research on the coordination of multi-finger piano keystroke actions is still in its infancy. Scholars primarily focus on phenomenological analysis and theoretical description, which lack accurate and practical modeling methods. Considering that the tendon of the ring finger is closely connected to adjacent fingers, resulting in limited flexibility in its movement, this study concentrates on coordinated keystrokes involving the middle and ring fingers. A motion measurement platform is constructed, and Leap Motion is used to collect data from 12 professional pianists. A universal model applicable to multiple individuals for multi-finger coordination in keystroke actions based on the backpropagation (BP) neural network is proposed, which is optimized using a genetic algorithm (GA) and a sparrow search algorithm (SSA). The angular rotation of the ring finger's MCP joint is selected as the model output, while the individual difference information and the angular data of the middle finger's MCP joint serve as inputs. The individual difference information used in this study includes ring finger length, middle finger length, and years of piano training. The results indicate that the proposed SSA-BP neural network-based model demonstrates superior predictive accuracy, with a root mean square error of 4.8328°. Based on this model, the keystroke motion of the ring finger's MCP joint can be accurately predicted from the middle finger's keystroke motion information, offering an evaluative method and scientific guidance for the training of multi-finger coordinated keystrokes in piano learners.


Subject(s)
Motor Skills , Music , Humans , Biomechanical Phenomena , Fingers , Movement
6.
Entropy (Basel) ; 26(1)2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38275493

ABSTRACT

Identifying critical links is of great importance for ensuring the safety of the cyber-physical power system. Traditional electrical betweenness only considers power flow distribution on the link itself, while ignoring the local influence of neighborhood links and the coupled reaction of information flow on energy flow. An identification method based on electrical betweenness centrality and neighborhood similarity is proposed to consider the internal power flow dynamic influence existing in multi-neighborhood nodes and the topological structure interdependence between power nodes and communication nodes. Firstly, for the power network, the electrical topological overlap is proposed to quantify the vulnerability of the links. This approach comprehensively considers the local contribution of neighborhood nodes, power transmission characteristics, generator capacity, and load. Secondly, in communication networks, effective distance closeness centrality is defined to evaluate the importance of communication links, simultaneously taking into account factors such as the information equipment function and spatial relationships. Next, under the influence of coupled factors, a comprehensive model is constructed based on the dependency relationships between information flow and energy flow to more accurately assess the critical links in the power network. Finally, the simulation results show the effectiveness of the proposed method under dynamic and static attacks.

7.
Chemosphere ; 352: 141319, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38286313

ABSTRACT

Manipulating the methanotroph (MOB) composition and microbial diversity is a promising strategy to optimize the methane (CH4) biofiltration efficiency of an engineered landfill cover soil (LCS) system. Inoculating soil with exogenous MOB-rich bacteria and amending soil with biochar show strong manipulating potential, but how the two stimuli interactively shape the microbial community structure and diversity has not been clarified. Therefore, three types of soils with active CH4 activities, including paddy soil, river wetland soil, and LCS were selected for enriching MOB-dominated communities (abbreviated as B_PS, B_RWS, and B_LCS, respectively). They were then inoculated to LCS which was amended with two distinct biochar. Besides the aerobic CH4 oxidation efficiencies, the evolution of the three microbial communities during the MOB enrichment processes and their colonization in two-biochar amended LCS were obtained. During the MOB enriching, a lag phase in CH4 consumption was observed merely for B_LCS. Type II MOB Methylocystis was the primary MOB for both B_PS and B_LCS; while type I MOB dominated for B_RWS and the major species were altered by gas concentrations. Compared to biochar, a more critical role was demonstrated for the bacteria inoculation in determining the community diversity and function of LCS. Instead, biochar modified the community structures by mainly stimulating the dominant MOB but could induce stochastic processes in community assembly, possibly related to its inorganic nutrients. Particularly, combined with biochar advantages, the paddy soil-derived bacteria consortiums with diverse MOB species demonstrated the potent adaption to LCS niches, not only retaining the high CH4-oxidizing capacities but also shaping a community structure with more diverse soil function. The results provided new insights into the optimization of an engineered CH4-mitigation soil system by manipulating the soil microbiomes with the cooperation of exogenous bacteria and biochar.


Subject(s)
Charcoal , Microbiota , Soil , Soil/chemistry , Soil Microbiology , Oxidation-Reduction , Methane/chemistry , Bacteria
8.
J Theor Biol ; 576: 111627, 2024 01 07.
Article in English | MEDLINE | ID: mdl-37977477

ABSTRACT

Communication via action potentials among neurons has been extensively studied. However, effective communication without action potentials is ubiquitous in biological systems, yet it has received much less attention in comparison. Multi-cellular communication among smooth muscles is crucial for regulating blood flow, for example. Understanding the mechanism of this non-action potential communication is critical in many cases, like synchronization of cellular activity, under normal and pathological conditions. In this paper, we employ a multi-scale asymptotic method to derive a macroscopic homogenized bidomain model from the microscopic electro-neutral (EN) model. This is achieved by considering different diffusion coefficients and incorporating nonlinear interface conditions. Subsequently, the homogenized macroscopic model is used to investigate communication in multi-cellular tissues. Our computational simulations reveal that the membrane potential of syncytia, formed by interconnected cells via connexins, plays a crucial role in propagating oscillations from one region to another, providing an effective means for fast cellular communication. Statement of Significance: In this study, we investigated cellular communication and ion transport in vascular smooth muscle cells, shedding light on their mechanisms under normal and abnormal conditions. Our research highlights the potential of mathematical models in understanding complex biological systems. We developed effective macroscale electro-neutral bi-domain ion transport models and examined their behavior in response to different stimuli. Our findings revealed the crucial role of connexinmediated membrane potential changes and demonstrated the effectiveness of cellular communication through syncytium membranes. Despite some limitations, our study provides valuable insights into these processes and emphasizes the importance of mathematical modeling in unraveling the complexities of cellular communication and ion transport.


Subject(s)
Cell Communication , Connexins , Membrane Potentials , Cell Communication/physiology , Myocytes, Smooth Muscle
9.
Mar Environ Res ; 192: 106210, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37788964

ABSTRACT

Lumnitzera littorea (Jack) Voigt is one of the most endangered mangrove species in China. Previous studies have showed the impact of chilling stress on L. littorea and the repsonses at physiological and biochemical levels, but few attentions have been paid at molecular level. In this study, we conducted genome-wide investigation of transcriptional and post-transcriptional dynamics in L. littorea in response to chilling stress (8 °C day/5 °C night). In the seedlings of L. littorea, chilling sensing and signal transducing, photosystem II regeneration and peroxidase-mediated reactive oxygen species (ROS) scavenging were substantially enhanced to combat the adverse impact induced by chilling exposure. We further revealed that alternative polyadenylation (APA) events participated in chilling stress-responsive processes, including energy metabolism and steroid biosynthesis. Furthermore, APA-mediated miRNA regulations downregulated the expression of the genes involved in fatty acid biosynthesis and elongation, and protein phosphorylation, reflecting the important role of post-transcriptional regulation in modulating chilling tolerance in L. littorea. Our findings present a molecular view to the adaptive characteristics of L. littorea and shed light on the conservation genomic approaches of endangered mangrove species.


Subject(s)
Cold Temperature , Stress, Physiological , Reactive Oxygen Species/metabolism , China , Gene Expression Regulation, Plant
10.
Plants (Basel) ; 12(18)2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37765415

ABSTRACT

Cyanobacteria, one of the most widespread photoautotrophic microorganisms on Earth, have evolved an inorganic CO2-concentrating mechanism (CCM) to adapt to a variety of habitats, especially in CO2-limited environments. Leptolyngbya boryana, a filamentous cyanobacterium, is widespread in a variety of environments and is well adapted to low-inorganic-carbon environments. However, little is currently known about the CCM of L. boryana, in particular its efficient carbon fixation module. In this study, we isolated and purified the cyanobacterium CZ1 from the Xin'anjiang River basin and identified it as L. boryana by 16S rRNA sequencing. Genome analysis revealed that L. boryana CZ1 contains ß-carboxysome shell proteins and form 1B of Rubisco, which is classify it as belonging to the ß-cyanobacteria. Further analysis revealed that L. boryana CZ1 employs a fine CCM involving two CO2 uptake systems NDH-13 and NDH-14, three HCO3- transporters (SbtA, BicA, and BCT1), and two carboxysomal carbonic anhydrases. Notably, we found that NDH-13 and NDH-14 are located close to each other in the L. boryana CZ1 genome and are back-to-back with the ccm operon, which is a novel gene arrangement. In addition, L. boryana CZ1 encodes two high-affinity Na+/HCO3- symporters (SbtA1 and SbtA2), three low-affinity Na+-dependent HCO3- transporters (BicA1, BicA2, and BicA3), and a BCT1; it is rare for a single strain to encode all three bicarbonate transporters in such large numbers. Interestingly, L. boryana CZ1 also uniquely encodes two active carbonic anhydrases, CcaA1 and CcaA2, which are also rare. Taken together, all these results indicated that L. boryana CZ1 is more efficient at CO2 fixation. Moreover, compared with the reported CCM gene arrangement of cyanobacteria, the CCM-related gene distribution pattern of L. boryana CZ1 was completely different, indicating a novel gene organization structure. These results can enrich our understanding of the CCM-related gene arrangement of cyanobacteria, and provide data support for the subsequent improvement and increase in biomass through cyanobacterial photosynthesis.

11.
Biosensors (Basel) ; 13(8)2023 Aug 13.
Article in English | MEDLINE | ID: mdl-37622897

ABSTRACT

The modulation of numerous signaling pathways is orchestrated by redox regulation of cellular environments. Maintaining dynamic redox homeostasis is of utmost importance for human health, given the common occurrence of altered redox status in various pathological conditions. The cardinal component of the thioredoxin system, mammalian thioredoxin reductase (TrxR) plays a vital role in supporting various physiological functions; however, its malfunction, disrupting redox balance, is intimately associated with the pathogenesis of multiple diseases. Accordingly, the dynamic monitoring of TrxR of live organisms represents a powerful direction to facilitate the comprehensive understanding and exploration of the profound significance of redox biology in cellular processes. A number of classic assays have been developed for the determination of TrxR activity in biological samples, yet their application is constrained when exploring the real-time dynamics of TrxR activity in live organisms. Fluorescent probes offer several advantages for in situ imaging and the quantification of biological targets, such as non-destructiveness, real-time analysis, and high spatiotemporal resolution. These benefits facilitate the transition from a poise to a flux understanding of cellular targets, further advancing scientific studies in related fields. This review aims to introduce the progress in the development and application of TrxR fluorescent probes in the past years, and it mainly focuses on analyzing their reaction mechanisms, construction strategies, and potential drawbacks. Finally, this study discusses the critical challenges and issues encountered during the development of selective TrxR probes and proposes future directions for their advancement. We anticipate the comprehensive analysis of the present TrxR probes will offer some glitters of enlightenment, and we also expect that this review may shed light on the design and development of novel TrxR probes.


Subject(s)
Fluorescent Dyes , Thioredoxin-Disulfide Reductase , Humans , Animals , Biological Assay , Mammals
12.
Bioorg Med Chem ; 79: 117169, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36657375

ABSTRACT

The selenoprotein thioredoxin reductase (TrxR) is of paramount importance in maintaining cellular redox homeostasis, and aberrant upregulation of TrxR is frequently observed in various cancers due to their elevated oxidative stress in cells. Thus, it seems promising and feasible to target the ablation of intracellular TrxR for the treatment of cancers. We report herein the design and synthesis of a series of Baylis-Hillman adducts, and identified a typical adduct that possesses the superior cytotoxicity against HepG2 cells over other types of cancer cells. The biological investigation shows the selected typical adduct selectively targets TrxR in HepG2 cells, which thereafter results in the collapse of intracellular redox homeostasis. Further mechanistic studies reveal that the selected typical adduct arrests the cell cycle in G1/G0 phase. Importantly, the malignant metastasis of HepG2 cells is significantly restrained by the selected typical adduct. With well-defined molecular target and mechanism of action, the selected typical adduct, even other Baylis-Hillman skeleton-bearing compounds, merits further development as candidate or ancillary agent for the treatment of various cancers.


Subject(s)
Neoplasms , Thioredoxin-Disulfide Reductase , Humans , Thioredoxin-Disulfide Reductase/metabolism , Oxidative Stress , Neoplasms/drug therapy , Oxidation-Reduction
13.
Phys Rev E ; 108(6-1): 064413, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38243466

ABSTRACT

Chemical reactions involve the movement of charges, and this paper presents a mathematical model for describing chemical reactions in electrolytes. The model is developed using an energy variational method that aligns with classical thermodynamics principles. It encompasses both electrostatics and chemical reactions within consistently defined energetic and dissipative functionals. Furthermore, the energy variation method is extended to account for open systems that involve the input and output of charge and mass. Such open systems have the capability to convert one form of input energy into another form of output energy. In particular, a two-domain model is developed to study a reaction system with self-regulation and internal switching, which plays a vital role in the electron transport chain of mitochondria responsible for ATP generation-a crucial process for sustaining life. Simulations are conducted to explore the influence of electric potential on reaction rates and switching dynamics within the two-domain system. It shows that the electric potential inhibits the oxidation reaction while accelerating the reduction reaction.

14.
Water Res ; 226: 119244, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36270143

ABSTRACT

An efficient in-situ self-cleaning catalytic ceramic-membrane tailored with MnO2-Co3O4 nanoparticles (Mn-Co-CM) was fabricated. Density functional theory calculations result substantiated that molecular ozone could be effectively adsorbed by oxygen vacancies (OV) on the Mn-Co-CM surface and then direct activated into a surface-bound atomic oxygen (*Oad) and a peroxide (*O2, ad), ultimately producing ·OH. Mn-Co-CM coupling with ozone efficiently removed foulants from the permeate and the membrane surface simultaneously and leading to in-situ formation of ·OH that changed the nature of the irreversible foulants and ultimately resulted in the rapid release and degradation of humic acid-like substances causing irreversible fouling. However, the commercial CM with ozone mainly removed cake layer fouling including protein-like and fulvic acid-like substances, followed by the slow release and degradation of irreversible foulant, resulting in many humic acid-like substances remain on the membrane surface as irreversible fouling. Based on these, the flux growth rate of Mn-Co-CM was 3.5 times higher than that of CM with ozone. This study provides new insights into the mechanism of in-situ membrane fouling mitigation, when using an efficient catalytic ceramic-membrane. This will facilitate the development of membrane antifouling strategies.


Subject(s)
Ozone , Water Purification , Oxides , Humic Substances , Membranes, Artificial , Manganese Compounds , Water Purification/methods
15.
Med Res Rev ; 42(5): 1930-1977, 2022 09.
Article in English | MEDLINE | ID: mdl-35657029

ABSTRACT

Following the discovery of nitric oxide (NO) and carbon monoxide (CO), hydrogen sulfide (H2 S) has been identified as the third gasotransmitter in humans. Increasing evidence have shown that H2 S is of preventive or therapeutic effects on diverse pathological complications. As a consequence, it is of great significance to develop suitable approaches of H2 S-based therapeutics for biomedical applications. H2 S-releasing agents (H2 S donors) play important roles in exploring and understanding the physiological functions of H2 S. More importantly, accumulating studies have validated the theranostic potential of H2 S donors in extensive repertoires of in vitro and in vivo disease models. Thus, it is imperative to summarize and update the literatures in this field. In this review, first, the background of H2 S on its chemical and biological aspects is concisely introduced. Second, the studies regarding the H2 S-releasing compounds are categorized and described, and accordingly, their H2 S-donating mechanisms, biological applications, and therapeutic values are also comprehensively delineated and discussed. Necessary comparisons between related H2 S donors are presented, and the drawbacks of many typical H2 S donors are analyzed and revealed. Finally, several critical challenges encountered in the development of multifunctional H2 S donors are discussed, and the direction of their future development as well as their biomedical applications is proposed. We expect that this review will reach extensive audiences across multiple disciplines and promote the innovation of H2 S biomedicine.


Subject(s)
Hydrogen Sulfide , Humans , Hydrogen Sulfide/pharmacology
16.
Environ Res ; 212(Pt B): 113285, 2022 09.
Article in English | MEDLINE | ID: mdl-35483411

ABSTRACT

The mechanisms governing interactions among various natural organic matter (NOM) fractions and the subsequently impact on ultrafiltration process have not been systematically studied. In this work, bovine serum albumin (BSA), humic acid (HA), sodium alginate (SA) were applied as model NOM to explore the influence of the interactions among NOM on ultrafiltration process. Results indicated that tryptophan-like fluorescence fraction was the dominant reaction fraction of HA to react with SA and BSA. Different interactions among model NOM not only changed the interception order of fluorescence fractions by ultrafiltration from fulvic acid-like, humic-like and tryptophan-like in BSA/HA mixture to tryptophan-like, humic-like and fulvic acid-like in BSA/HA/SA/kaolin mixture, but also remarkably influence the membrane fouling behavior. In BSA/HA mixture, new-generated aggregates with molecular weight (MW) of 10 kDa could not pass though ultrafiltration membrane and mainly contributed to chemical reversible fouling. In BSA/HA/SA mixture, SA simultaneously reacted with BSA and HA to generate aggregates with larger MW which could be washed down by physical cleaning. In BSA/HA/SA/kaolin mixture, the aggregates with MW of 10 kDa and chemical reversible fouling were disappeared due to the adsorption role of kaolin. These findings could further improve our understanding regarding membrane fouling mechanisms of raw water with different components.


Subject(s)
Ultrafiltration , Water Purification , Alginates/chemistry , Humic Substances/analysis , Kaolin/chemistry , Membranes, Artificial , Serum Albumin, Bovine/chemistry , Tryptophan , Ultrafiltration/methods , Water Purification/methods
17.
Environ Sci Pollut Res Int ; 29(42): 63321-63343, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35451714

ABSTRACT

Despite their important role in the fight against global climate change, the coordination of green pharmaceutical supply chains (GPSC) has rarely been studied. To fill this research gap and realize the optimal green performance of GPSC, this study aimed to investigate the coordination of a GPSC considering green investment, green logistics, and government intervention. Using a game-theoretic approach, we establish decision models and analyze the equilibrium strategies in several GPSC scenarios. A linked two-part tariff (LTPT) contract is proposed for the coordination of the GPSC. In addition, we explore the many important implications of changes in the parameters. This research shows that, under different conditions, governments should reasonably implement different interventions in order to promote the positive global performance of GPSC. Government intervention can increase the benchmark height and make more room for green improvement. The proposed LTPT contract can assist in the realization of GPSC coordination, obtain a greater consumer surplus, and achieve optimal green performance. Higher flexibility-influence coefficients of green degree on costs are conducive to the emission reductions and sustainable development of GPSC. Moreover, cultivating green preference in the market can save the government expenditures on subsidies. When the green investment coefficient of a GPSC is larger, the GPSC members lack motivation for green improvement, and the government needs to provide more subsidies rather than taxes in order to improve the green degree of the GPSC. Increased rewards from the government to the pharmaceutical manufacturer and the TPLSP will reduce the subsidies for the pharmaceutical retailer. Government intervention influences the scope of an LTPT contract. The findings provide rich managerial insights and implications for the GPSC policymakers and decision-makers in achieving sustainability goals.


Subject(s)
Commerce , Consumer Behavior , Government , Investments , Pharmaceutical Preparations
18.
Sci Total Environ ; 832: 155071, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35395298

ABSTRACT

This review renewed insight into the existing complex and contradictory mechanisms of catalytic ozonation by two-dimensional layered carbon-based materials (2D-LCMs) for degradation toxic refractory organics in aqueous solution. Migration and capture of active electrons are central to catalytic ozonation reactions, which was not studied or reviewed more clearly. Based on this perspective, the catalytic ozonation potential of 2D-LCMs synthesized by numerous methods is firstly contrasted to guide the design of subsequent carbon based-catalysts, and not limited to 2D-LCMs. Matching ROS to active sites is a key step in understanding the catalytic mechanism. The structure-activity relationships between reported numerous active sites and ROS evolution is then constructed. Result showed that OH could be produced by -OH, -C=O, -COOH groups, defective sites, immobilized metal atoms, doped heteroatoms and photo-induced electrons; and O2- could be produced by -OH groups and sp2-bonded carbon. The normalized model further be used to visually compare the contribution degree of various regulatory methods to performance improvement. More importantly, this review calls for 2D-LCMs-based catalytic ozonation to be studied without circumventing the issue of structural stability, which would lead to many proposals of catalysts and its involved catalytic reaction mechanism being meaningless.


Subject(s)
Ozone , Water Pollutants, Chemical , Water Purification , Carbon , Catalysis , Ozone/chemistry , Reactive Oxygen Species , Water Pollutants, Chemical/analysis
19.
J Environ Sci (China) ; 115: 88-102, 2022 May.
Article in English | MEDLINE | ID: mdl-34969480

ABSTRACT

In this study, carbamazepine (CBZ) decay in solution has been studied by coupling electrocoagulation with electro-Fenton (EC-EF) with a novel P-rGO/carbon felt (CF) cathode, aiming to accelerate the in-situ generation of •OH, instead of adding Fe2+ and H2O2. Firstly, the fabricated P-rGO and its derived cathode were characterized by XRD, SEM, AFM, XPS and electrochemical test (EIS, CV and LSV). Secondly, it was confirmed that the performance in removal efficiency and electric energy consumption (EEC) by EC-EF (kobs=0.124 min-1, EEC=43.98 kWh/kg CBZ) was better than EF (kobs=0.069 min-1, EEC=61.04 kWh/kg CBZ). Then, P-rGO/CF (kobs=0.248 min-1, EEC=29.47 kWh/kg CBZ, CE=61.04%) showed the best performance in EC-EF, among all studied heteroatom-doped graphene/CF. This superior performance may be associated with its largest layer spacing and richest C=C, which can promote the electron transfer rate and conductivity of the cathode. Thus, more H2O2 and •OH could be produced to degrade CBZ, and almost 100% CBZ was removed with kobs being 0.337 min-1 and the EEC was only 24.18 kWh/kg CBZ, under the optimal conditions (P-rGO loading was 6.0 mg/cm2, the current density was 10.0 mA/cm2, the gap between electrode was 2.0 cm). Additionally, no matter the influent is acidic, neutral or alkaline, no additional pH adjustment is required for the effluent of EC-EF. At last, an inconsecutive empirical kinetic model was firstly established to predict the effect of operating parameters on CBZ removal.


Subject(s)
Hydrogen Peroxide , Water Pollutants, Chemical , Carbamazepine , Electrocoagulation , Electrodes , Graphite , Oxidation-Reduction , Water Pollutants, Chemical/analysis
20.
Chemosphere ; 287(Pt 3): 132260, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34543907

ABSTRACT

Cementitious membrane (CM) is a promising microfiltration membrane with low cost for raw materials and low energy consumption of non-sintering fabrication process. A novel carbon-cementitious microfiltration membrane (CCM) was fabricated with powdered activated carbon (PAC) as an additive based on CM, to solve the low mechanical strength of CM during multiple practical uses. While maintaining adequate pure water flux and porosity, the mechanical strength of the membrane was greatly improved to ensure the stability of the membrane in the filtration process. The bending strength of the CCM was 2-3 times higher than that of CM. 10 wt% CCM has the smallest critical pore size and optimal permeability, which was chosen to be the optimal PAC doping ratio. The X-ray diffraction and FT-IR results indicated that the addition of PAC did not change the mineral composition of cement hydration products, and the appropriate amount of PAC acted as a nucleation site and accelerated hydration. The effect of size effect on bending strength was more obvious with the decrease of membrane thickness. In the membrane adsorption experiments of benzophenone-4, nitrobenzene and p-chloronitrobenzene, the CCM exhibited prominent adsorption properties than CM. These results broaden the application scope of microfiltration membranes in water treatment process.


Subject(s)
Charcoal , Water Purification , Adsorption , Membranes, Artificial , Powders , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...