Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Immunol Cell Biol ; 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714318

ABSTRACT

The development of in vitro models is essential for a comprehensive understanding and investigation of pulmonary fibrosis (PF) at both cellular and molecular levels. This study presents a literature review and an analysis of various cellular models used in scientific studies, specifically focusing on their applications in elucidating the pathogenesis of PF. Our study highlights the importance of taking a comprehensive approach to studing PF, emphasizing the necessity of considering multiple cell types and organs and integrating diverse analytical perspectives. Notably, primary cells demonstrate remarkable cell growth characteristics and gene expression profiles; however, their limited availability, maintenance challenges, inability for continuous propagation and susceptibility to phenotypic changes over time significantly limit their utility in scientific investigation. By contrast, immortalized cell lines are easily accessible, cultured and continuously propagated, although they may have some phenotypic differences from primary cells. Furthermore, in vitro coculture models offer a more practical and precise method to explore complex interactions among cells, tissues and organs. Consequently, when developing models of PF, researchers should thoroughly assess the advantages, limitations and relevant mechanisms of different cell models to ensure their selection is consistent with the research objectives.

2.
Gene ; 897: 148040, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38065426

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive lung disease involving multiple factors and genes. Astragaloside IV (ASV) is one of the main bioactive ingredients extracted from the root of Astragalus membranaceus, which plays an important role in anti-inflammatory, antioxidant and improve cardiopulmonary function. Epithelial-mesenchymal transition (EMT) is a key driver of the process of pulmonary fibrosis, and Zinc finger E-box-binding homeobox 1 (ZEB1) can promote pulmonary fibrosis in an EMT-dependent manner. Here, we found that ASV effectively inhibited the ZEB1 and EMT in both bleomycin (BLM)-induced rat pulmonary fibrosis and TGF-ß1-treated A549 cells. To further elucidate the molecular mechanisms underlying effects of ASV in IPF, we explored the truth using bioinformatics, plasmid construction, immunofluorescence staining, western blotting and other experiments. Dual luciferase reporter assay and bioinformatics proved that miR-200c not only acts as an upstream regulatory miRNA of ZEB1 but also has binding sites for the lncRNA-ATB. In A549 cell-based EMT models, ASV reduced the expression of lncRNA-ATB and upregulated miR-200c. Furthermore, overexpression of lncRNA-ATB and silencing of miR-200c reversed the down-regulation of ZEB1 and the inhibition of EMT processes by ASV. In addition, the intervention of ASV prevented lncRNA-ATB as a ceRNA from regulating the expression of ZEB1 through sponging miR-200c. Taken together, the results showed that ASV inhibited the EMT process through the lncRNA-ATB/miR-200c/ZEB1 signaling pathway, which provides a novel approach to the treatment of IPF.


Subject(s)
MicroRNAs , Pulmonary Fibrosis , RNA, Long Noncoding , Saponins , Triterpenes , Rats , Animals , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , MicroRNAs/metabolism , Signal Transduction , Zinc Finger E-box-Binding Homeobox 1/genetics , Zinc Finger E-box-Binding Homeobox 1/metabolism , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic , Cell Line, Tumor
SELECTION OF CITATIONS
SEARCH DETAIL
...