Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 321
Filter
1.
Curr Med Imaging ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956904

ABSTRACT

BACKGROUND: Capitellar injury (CI) includes capitellar cartilage injury (CCI) and capitellar fracture (CF). A comprehensive classification of CI concurrent with radial head fracture (RHF) that can guide surgical strategy is lacking in the literature. Therefore, this study aimed to introduce a comprehensive classification of CI concurrent with RHF and investigate its value. METHODS: A total of 35 patients with CI concurrent with RHF confirmed by surgical exploration were retrospectively analyzed, includingmales in 19 cases and females in 16 cases. RHF was classified according to the Mason classification, and CI was classified into six types, including 3 types of CCI and CF, each based on the site and degrees of injuries (comprehensive classification method proposed in this study). The classification results were analyzed. Two radiologists were selected to independently classify the CI, and the inter- and intra-observer agreements were analyzed with kappa statistics. RESULTS: Mason Type I, II, III, and IV RHF accounted for 14.3%, 48.6%, 37.1%, and 0% of cases, respectively. Type I, II, III, IV, V, and VI CIs accounted for 22.9%, 34.3%, 25.7%, 11.4%, 2.9%, and 2.9% of cases, respectively. Therewas no obvious relationship between the CI and RHF types (p > 0.05). All Type I CIs underwent removal, 9 Type II CIs underwent microfracture repair, and 3 Type II CIs underwent removal. All Type III CIs underwent fixation, one Type IV CI underwent removal, and 3 Type IV CIs underwent fixation, one Type V CI underwent fixation, and one Type VI CI underwent arthroplasty. The inter- and intra-observer kappa coefficients were 0.830 ~ 0.905 and 0.805 ~ 0.892, respectively. At 12 months postoperatively, the elbow function evaluated by MEPS was 91, with an excellent and good rate of 97%. CONCLUSION: Different types of CI differ not only in pathology but also in treatment methods. The CI comprehensive classification put forth in this paper for the first time reflects different types of pathology well, with high consistency and repeatability, and can guide the selection of surgical methods, leading to satisfactory postoperative results.

2.
Neurosurgery ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38904404

ABSTRACT

BACKGROUND AND OBJECTIVES: Advanced diffusion-weighted MRI (DWI) modeling, such as diffusion tensor imaging (DTI) and diffusion basis spectrum imaging (DBSI), may help guide rehabilitation strategies after surgical decompression for cervical spondylotic myelopathy (CSM). Currently, however, postoperative DWI is difficult to interpret, owing to signal distortions from spinal instrumentation. Therefore, we examined the relationship between postoperative DTI/DBSI-extracted from the rostral C3 spinal level-and clinical outcome measures at 2-year follow-up after decompressive surgery for CSM. METHODS: Fifty patients with CSM underwent complete clinical and DWI evaluation-followed by DTI/DBSI analysis-at baseline and 2-year follow-up. Clinical outcomes included the modified Japanese Orthopedic Association score and comprehensive patient-reported outcomes. DTI metrics included apparent diffusion coefficient, fractional anisotropy, axial diffusivity, and radial diffusivity. DBSI metrics evaluated white matter tracts through fractional anisotropy, fiber fraction, axial diffusivity, and radial diffusivity as well as extra-axonal pathology through restricted and nonrestricted fraction. Cross-sectional Spearman's correlations were used to compare postoperative DTI/DBSI metrics with clinical outcomes. RESULTS: Twenty-seven patients with CSM, including 15, 7, and 5 with mild, moderate, and severe disease, respectively, possessed complete baseline and postoperative DWI scans. At 2-year follow-up, there were 10 significant correlations among postoperative DBSI metrics and postoperative clinical outcomes compared with 3 among postoperative DTI metrics. Of the 13 significant correlations, 7 involved the neck disability index (NDI). The strongest relationships were between DBSI axial diffusivity and NDI (r = 0.60, P < .001), DBSI fiber fraction and NDI (rs = -0.58, P < .001), and DBSI restricted fraction and NDI (rs = 0.56, P < .001). The weakest correlation was between DTI apparent diffusion coefficient and NDI (r = 0.35, P = .02). CONCLUSION: Quantitative measures of spinal cord microstructure after surgery correlate with postoperative neurofunctional status, quality of life, and pain/disability at 2 years after decompressive surgery for CSM. In particular, DBSI metrics may serve as meaningful biomarkers for postoperative disease severity for patients with CSM.

3.
Anim Cells Syst (Seoul) ; 28(1): 237-250, 2024.
Article in English | MEDLINE | ID: mdl-38741950

ABSTRACT

The role of ferroptosis-associated gene SLC7A11 in esophageal cancer progression is largely unknown, therefore, the effects of blocking SLC7A11 on esophageal squamous cell carcinoma (ESCC) cells are evaluated. Results showed that SLC7A11 was overexpressed in ESCC tissues both in mRNA and protein levels. Blocking SLC7A11 using Erastin suppressed the proliferation and colony formation of ESCC cells, decreased cellular ATP levels, and improved ROS production. Sixty-three SLC7A11-binding proteins were identified using the IP-MS method, and these proteins were enriched in four signaling pathways, including spliceosome, ribosome, huntington disease, and diabetic cardiomyopathy. The deubiquitinase inhibitors PR-619, GRL0617, and P 22077 could reduce at least 40% protein expression level of SLC7A11 in ESCC cells, and PR-619 and GRL0617 exhibited suppressive effects on the cell viability and colony formation ability of KYSE30 cells, respectively. Erastin downregulated GPX4 and DHODH and also reduced the levels of ß-catenin, p-STAT3, and IL-6 in ESCC cells. In conclusion, SLC7A11 was overexpressed in ESCC, and blocking SLC7A11 using Erastin mitigated malignant phenotypes of ESCC cells and downregulated key ferroptosis-associated molecules GPX4 and DHODH. The therapeutic potential of targeting SLC7A11 should be further evaluated in the future.

4.
ACS Appl Mater Interfaces ; 16(13): 16011-16028, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38529951

ABSTRACT

Superbug infections and transmission have become major challenges in the contemporary medical field. The development of novel antibacterial strategies to efficiently treat bacterial infections and conquer the problem of antimicrobial resistance (AMR) is extremely important. In this paper, a bimetallic CuCo-doped nitrogen-carbon nanozyme-functionalized hydrogel (CuCo/NC-HG) has been successfully constructed. It exhibits photoresponsive-enhanced enzymatic effects under near-infrared (NIR) irradiation (808 nm) with strong peroxidase (POD)-like and oxidase (OXD)-like activities. Upon NIR irradiation, CuCo/NC-HG possesses photodynamic activity for producing singlet oxygen(1O2), and it also has a high photothermal conversion effect, which not only facilitates the elimination of bacteria but also improves the efficiency of reactive oxygen species (ROS) production and accelerates the consumption of GSH. CuCo/NC-HG shows a lower hemolytic rate and better cytocompatibility than CuCo/NC and possesses a positive charge and macroporous skeleton for restricting negatively charged bacteria in the range of ROS destruction, strengthening the antibacterial efficiency. Comparatively, CuCo/NC and CuCo/NC-HG have stronger bactericidal ability against methicillin-resistant Staphylococcus aureus (MRSA) and ampicillin-resistant Escherichia coli (AmprE. coli) through destroying the cell membranes with a negligible occurrence of AMR. More importantly, CuCo/NC-HG plus NIR irradiation can exhibit satisfactory bactericidal performance in the absence of H2O2, avoiding the toxicity from high-concentration H2O2. In vivo evaluation has been conducted using a mouse wound infection model and histological analyses, and the results show that CuCo/NC-HG upon NIR irradiation can efficiently suppress bacterial infections and promote wound healing, without causing inflammation and tissue adhesions.


Subject(s)
Bacterial Infections , Methicillin-Resistant Staphylococcus aureus , Animals , Hydrogels/pharmacology , Escherichia coli , Hydrogen Peroxide , Reactive Oxygen Species , Phototherapy , Bacterial Infections/drug therapy , Anti-Bacterial Agents/pharmacology , Carbon , Disease Models, Animal , Nitrogen
5.
Article in English | MEDLINE | ID: mdl-38551053

ABSTRACT

BACKGROUND: Extracellular vesicles (EVs) are emerging as potential drug carriers in the fight against COVID-19. This study investigates the ability of EVs as drug carriers to target SARS-CoV-2-infected cells. METHODS: EVs were modified using Xstamp technology to carry the virus's RBD, enhancing targeting ability to hACE2+ cells and improving drug delivery efficiency. Characterization confirmed EVs' suitability as drug carriers. For in vitro tests, A549, Caco-2, and 4T1 cells were used to assess the targeting specificity of EVRs (EVs with membrane-surface enriched RBD). Moreover, we utilized an ex vivo lung tissue model overexpressing hACE2 as an ex vivo model to confirm the targeting capability of EVRs toward lung tissue. The study also evaluated drug loading efficiency and assessed the potential of the anti-inflammatory activity on A549 lung cancer cells exposed to lipopolysaccharide. Results demonstrate the successful construction of RBD-fused EVRs on the membrane-surface. In both in vitro and ex vivo models, EVRs significantly enhance their targeting ability towards hACE2+ cells, rendering them a safe and efficient drug carrier. Furthermore, ultrasound loading efficiently incorporates IL-10 into EVRs, establishing an effective drug delivery system that ameliorates the pro-inflammatory response induced by LPS-stimulated A549 cells. CONCLUSION: These findings indicate promising opportunities for engineered EVs as a novel nanomedicine carrier, offering valuable insights for therapeutic strategies against COVID-19 and other diseases.

6.
Biomater Sci ; 12(6): 1558-1572, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38305728

ABSTRACT

In this work, positively charged N-carbazoleacetic acid decorated CuxO nanoparticles (CuxO-CAA NPs) as novel biocompatible nanozymes have been successfully prepared through a one-step hydrothermal method. CuxO-CAA can serve as a self-cascading platform through effective GSH-OXD-like and POD-like activities, and the former can induce continuous generation of H2O2 through the catalytic oxidation of overexpressed GSH in the bacterial infection microenvironment, which in turn acts as a substrate for the latter to yield ˙OH via Fenton-like reaction, without introducing exogenous H2O2. Upon NIR irradiation, CuxO-CAA NPs possess a high photothermal conversion effect, which can further improve the enzymatic activity for increasing the production rate of H2O2 and ˙OH. Besides, the photodynamic performance of CuxO-CAA NPs can produce 1O2. The generated ROS and hyperthermia have synergetic effects on bacterial mortality. More importantly, CuxO-CAA NPs are more stable and biosafe than Cu2O, and can generate electrostatic adsorption with negatively charged bacterial cell membranes and accelerate bacterial death. Antibacterial results demonstrate that CuxO-CAA NPs are lethal against methicillin-resistant Staphylococcus aureus (MRSA) and ampicillin-resistant Escherichia coli (AREC) through destroying the bacterial membrane and disrupting the bacterial biofilm formation. MRSA-infected animal wound models show that CuxO-CAA NPs can efficiently promote wound healing without causing toxicity to the organism.


Subject(s)
Bacterial Infections , Methicillin-Resistant Staphylococcus aureus , Nanoparticles , Animals , Hydrogen Peroxide , Phototherapy , Nanoparticles/chemistry , Bacterial Infections/drug therapy , Escherichia coli , Anti-Bacterial Agents/chemistry
7.
Mult Scler Relat Disord ; 84: 105494, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38359694

ABSTRACT

BACKGROUND AND OBJECTIVES: Diffusion basis spectrum imaging (DBSI) extracts multiple anisotropic and isotropic diffusion tensors, providing greater histopathologic specificity than diffusion tensor imaging (DTI). Persistent black holes (PBH) represent areas of severe tissue damage in multiple sclerosis (MS), and a high PBH burden is associated with worse MS disability. This study evaluated the ability of DBSI and DTI to predict which acute contrast-enhancing lesions (CELs) would persist as T1 hypointensities (i.e. PBHs) 12 months later. We expected that a higher radial diffusivity (RD), representing demyelination, and higher DBSI-derived isotropic non-restricted fraction, representing edema and increased extracellular space, of the acute CEL would increase the likelihood of future PBH development. METHODS: In this prospective cohort study, relapsing MS patients with ≥1 CEL(s) underwent monthly MRI scans for 4 to 6 months until gadolinium resolution. DBSI and DTI metrics were quantified when the CEL was most conspicuous during the monthly scans. To determine whether the CEL became a PBH, a follow-up MRI was performed at least 12 months after the final monthly scan. RESULTS: The cohort included 20 MS participants (median age 33 years; 13 women) with 164 CELs. Of these, 59 (36 %) CELs evolved into PBHs. At Gd-max, DTI RD and AD of all CELs increased, and both metrics were significantly elevated for CELs which became PBHs, as compared to non-black holes (NBHs). DTI RD above 0.74 conferred an odds ratio (OR) of 7.76 (CI 3.77-15.98) for a CEL becoming a PBH (AUC 0.80, CI 0.73-0.87); DTI axial diffusivity (AD) above 1.22 conferred an OR of 7.32 (CI 3.38-15.86) for becoming a PBH (AUC 0.75, CI 0.66-0.83). DBSI RD and AD did not predict PBH development in a multivariable model. At Gd-max, DBSI restricted fraction decreased and DBSI non-restricted fraction increased in all CELs, and both metrics were significantly different for CELs which became PBHs, as compared to NBHs. A CEL with a DBSI non-restricted fraction above 0.45 had an OR of 4.77 (CI 2.35-9.66) for becoming a PBH (AUC 0.74, CI 0.66-0.81); a CEL with a DBSI restricted fraction below 0.07 had an OR of 9.58 (CI 4.59-20.02) for becoming a PBH (AUC 0.80, 0.72-0.87). CONCLUSION: Our findings suggest that greater degree of edema/extracellular space in a CEL is a predictor of tissue destruction, as evidenced by PBH evolution.


Subject(s)
Multiple Sclerosis , Humans , Female , Adult , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/pathology , Diffusion Tensor Imaging/methods , Brain/diagnostic imaging , Brain/pathology , Prospective Studies , Edema/pathology
8.
Antioxidants (Basel) ; 13(1)2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38247539

ABSTRACT

Esophageal squamous cell carcinoma (ESCC) is one of the most frequent malignant tumors, and the mechanisms underlying the anti-ferroptosis of esophageal cancer cells are still largely unclear. This study aims to explore the roles of amplified protein kinase C iota (PKCiota) in the ferroptosis of ESCC cells. Cell viability, colony formation, MDA assay, Western blotting, co-IP, PLA, and RNA-seq technologies are used to reveal the roles and mechanisms underlying the PKCiota-induced resistance of ESCC cells to ferroptosis. We showed here that PKCiota was amplified and overexpressed in ESCC and decreased during RSL3-induced ferroptosis of ESCC cells. PKCiota interacted with GPX4 and the deubiquitinase USP14 and improved the protein stability of GPX4 by suppressing the USP14-mediated autophagy-lysosomal degradation pathway. PKCiota was negatively regulated by miR-145-5p, which decreased in esophageal cancer, and also regulated by USP14 and GPX4 by a positive feedback loop. PKCiota silencing and miR-145-5p overexpression suppressed tumor growth of ESCC cells in vivo, respectively; even a combination of silencing PKCiota and RSL3 treatment showed more vital suppressive roles on tumor growth than silencing PKCiota alone. Both PKCiota silencing and miR-145-5p overexpression sensitized ESCC cells to RSL3-induced ferroptosis. These results unveiled that amplified and overexpressed PKCiota induced the resistance of ESCC cells to ferroptosis by suppressing the USP14-mediated autophagic degradation of GPX4. Patients with PKCiota/USP14/GPX4 pathway activation might be sensitive to GPX4-targeted ferroptosis-based therapy.

9.
Biomater Sci ; 12(2): 425-439, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38050470

ABSTRACT

In this work, we successfully constructed Mn-coordinated nitrogen-carbon nanoparticles (Mn-N-C NPs) exhibiting multienzyme-like activities. In a bacterial infectious microenvironment, the POD-like and OXD-like activities of Mn-N-C NPs could synergistically trigger the generation of ROS (˙OH and O2˙-), causing oxidative damage to the bacterial cell membrane for killing bacteria. Alternatively, in neutral or weak alkaline normal tissues, the excessive O2˙- could be converted into O2 and H2O2via the SOD-like ability of Mn-N-C NPs, and subsequently their CAT-like activity catalyzed excess H2O2 into H2O and O2 for protecting normal cells through the antioxidant defense. Mn-N-C NPs also possessed a good NIR-photothermal performance, which could enhance their POD-like and OXD-like activities. Furthermore, Mn-N-C NPs could facilitate the GSH oxidation process and disrupt the intrinsic balance in the bacterial protection microenvironment with the assistance of H2O2, which is beneficial for rapid bacterial death. Undoubtedly, the Mn-N-C NPs + H2O2 system showed the highest antibacterial activity when irradiated with an 808 nm laser, destroying the bacterial membrane and causing the efflux of proteins. Moreover, the Mn-N-C NPs + H2O2 system was immune to the development of bacterial resistance and could efficiently disrupt the formation of a bacterial biofilm with negligible cytotoxicity and low hemolysis ratio. Finally, Mn-N-C NPs exhibited an excellent antibacterial performance in vivo and could accelerate wound healing without cellular inflammation production. Therefore, due to their significant therapeutic effects, Mn-N-C NPs show great potential in fighting antibiotic-resistant bacteria.


Subject(s)
Bacterial Infections , Nanoparticles , Humans , Hydrogen Peroxide , Antioxidants , Bacterial Infections/drug therapy , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use
10.
bioRxiv ; 2024 Jan 13.
Article in English | MEDLINE | ID: mdl-37961719

ABSTRACT

Precise control of protein ubiquitination is essential for brain development, and hence, disruption of ubiquitin signaling networks can lead to neurological disorders. Mutations of the deubiquitinase USP7 cause the Hao-Fountain syndrome (HAFOUS), characterized by developmental delay, intellectual disability, autism, and aggressive behavior. Here, we report that conditional deletion of USP7 in excitatory neurons in the mouse forebrain triggers diverse phenotypes including sensorimotor deficits, learning and memory impairment, and aggressive behavior, resembling clinical features of HAFOUS. USP7 deletion induces neuronal apoptosis in a manner dependent of the tumor suppressor p53. However, most behavioral abnormalities in USP7 conditional mice persist despite p53 loss. Strikingly, USP7 deletion in the brain perturbs the synaptic proteome and dendritic spine morphogenesis independently of p53. Integrated proteomics analysis reveals that the neuronal USP7 interactome is enriched for proteins implicated in neurodevelopmental disorders and specifically identifies the RNA splicing factor Ppil4 as a novel neuronal substrate of USP7. Knockdown of Ppil4 in cortical neurons impairs dendritic spine morphogenesis, phenocopying the effect of USP7 loss on dendritic spines. These findings reveal a novel USP7-Ppil4 ubiquitin signaling link that regulates neuronal connectivity in the developing brain, with implications for our understanding of the pathogenesis of HAFOUS and other neurodevelopmental disorders.

11.
Article in English | WPRIM (Western Pacific) | ID: wpr-1010323

ABSTRACT

OBJECTIVE@#To determine whether monotropein has an anticancer effect and explore its potential mechanisms against colorectal cancer (CRC) through network pharmacology and molecular docking combined with experimental verification.@*METHODS@#Network pharmacology and molecular docking were used to predict potential targets of monotropein against CRC. Cell counting kit assay, plate monoclonal assay and microscopic observation were used to investigate the antiproliferative effects of monotropein on CRC cells HCT116, HT29 and LoVo. Flow cytometry and scratch assay were used to analyze apoptosis and cell cycle, as well as cell migration, respectively in HCT116, HT29, and LoVo cells. Western blotting was used to detect the expression of proteins related to apoptosis, cell cycle, and cell migration, and the expression of proteins key to the Akt pathway.@*RESULTS@#The Gene Ontology and Reactome enrichment analyses indicated that the anticancer potential of monotropein against CRC might be involved in multiple cancer-related signaling pathways. Among these pathways, RAC-beta serine/threonine-protein kinase (Akt1, Akt2), cyclin-dependent kinase 6 (CDK6), matrix metalloproteinase-9 (MMP9), epidermal growth factor receptor (EGFR), cell division control protein 42 homolog (CDC42) were shown as the potential anticancer targets of monotropein against CRC. Molecular docking suggested that monotropein may interact with the 6 targets (Akt1, Akt2, CDK6, MMP9, EGFR, CDC42). Subsequently, cell activity of HCT116, HT29 and LoVo cell lines were significantly suppressed by monotropein (P<0.05). Furthermore, our research revealed that monotropein induced cell apoptosis by inhibiting Bcl-2 and increasing Bax, induced G1-S cycle arrest in colorectal cancer by decreasing the expressions of CyclinD1, CDK4 and CDK6, inhibited cell migration by suppressing the expressions of CDC42 and MMP9 (P<0.05), and might play an anticancer role through Akt signaling pathway.@*CONCLUSION@#Monotropein exerts its antitumor effects primarily by arresting the cell cycle, causing cell apoptosis, and inhibiting cell migration. This indicates a high potential for developing novel medication for treating CRC.


Subject(s)
Humans , Proto-Oncogene Proteins c-akt/metabolism , Cell Proliferation , Matrix Metalloproteinase 9 , Molecular Docking Simulation , Cell Cycle , ErbB Receptors , Apoptosis , Colorectal Neoplasms/pathology , Cell Line, Tumor
12.
Article in English | MEDLINE | ID: mdl-38127609

ABSTRACT

The objective of this study is to develop a deep-learning-based detection and diagnosis technique for carotid atherosclerosis (CA) using a portable freehand 3-D ultrasound (US) imaging system. A total of 127 3-D carotid artery scans were acquired using a portable 3-D US system, which consisted of a handheld US scanner and an electromagnetic (EM) tracking system. A U-Net segmentation network was first applied to extract the carotid artery on 2-D transverse frame, and then, a novel 3-D reconstruction algorithm using fast dot projection (FDP) method with position regularization was proposed to reconstruct the carotid artery volume. Furthermore, a convolutional neural network (CNN) was used to classify healthy and diseased cases qualitatively. Three-dimensional volume analysis methods, including longitudinal image acquisition and stenosis grade measurement, were developed to obtain the clinical metrics quantitatively. The proposed system achieved a sensitivity of 0.71, a specificity of 0.85, and an accuracy of 0.80 for diagnosis of CA. The automatically measured stenosis grade illustrated a good correlation ( r = 0.76) with the experienced expert measurement. The developed technique based on 3-D US imaging can be applied to the automatic diagnosis of CA. The proposed deep-learning-based technique was specially designed for a portable 3-D freehand US system, which can provide a more convenient CA examination and decrease the dependence on the clinician's experience.


Subject(s)
Carotid Artery Diseases , Humans , Constriction, Pathologic , Carotid Artery Diseases/diagnostic imaging , Carotid Arteries/diagnostic imaging , Ultrasonography , Imaging, Three-Dimensional/methods , Image Processing, Computer-Assisted/methods
13.
Article in English | MEDLINE | ID: mdl-38083639

ABSTRACT

The handheld 3D ultrasound imaging technique based on position tracking systems has been rapidly developed and widely applied in recent decades. The objectives of this study are to investigate the performance and accuracy of different 3D reconstruction algorithms including Voxel Nearest Neighbor (VNN), Pose Optimization Based (POB), and Implicit Representation (IR) methods. The high-precision phantom was used as the validation model to measure 2D/3D distance on the reconstructed image volume, and the measurements were evaluated with the true values obtained by caliber. The results indicated that the IR method presented the best reconstruction visualization and the smallest reconstruction errors for different motion cases. It demonstrated that the neural network-based reconstruction method can improve image quality and reduce reconstruction errors for the wireless freehand 3D ultrasound imaging systems.Clinical Relevance- This study validates the accuracy and precision of the different reconstruction algorithms for freehand 3D ultrasound imaging systems.


Subject(s)
Image Processing, Computer-Assisted , Imaging, Three-Dimensional , Imaging, Three-Dimensional/methods , Image Processing, Computer-Assisted/methods , Algorithms , Ultrasonography/methods , Neural Networks, Computer
14.
Front Neurol ; 14: 1269817, 2023.
Article in English | MEDLINE | ID: mdl-38152638

ABSTRACT

Introduction: Traumatic optic neuropathy (TON) is the optic nerve injury secondary to brain trauma leading to visual impairment and vision loss. Current clinical visual function assessments often fail to detect TON due to slow disease progression and clinically silent lesions resulting in potentially delayed or missed treatment in patients with traumatic brain injury (TBI). Methods: Diffusion basis spectrum imaging (DBSI) is a novel imaging modality that can potentially fill this diagnostic gap. Twenty-two, 16-week-old, male mice were equally divided into a sham or TBI (induced by moderate Closed-Head Impact Model of Engineered Rotational Acceleration device) group. Briefly, mice were anesthetized with isoflurane (5% for 2.5 min followed by 2.5% maintenance during injury induction), had a helmet placed over the head, and were placed in a holder prior to a 2.1-joule impact. Serial visual acuity (VA) assessments, using the Virtual Optometry System, and DBSI scans were performed in both groups of mice. Immunohistochemistry (IHC) and histological analysis of optic nerves was also performed after in vivo MRI. Results: VA of the TBI mice showed unilateral or bilateral impairment. DBSI of the optic nerves exhibited bilateral involvement. IHC results of the optic nerves revealed axonal loss, myelin injury, axonal injury, and increased cellularity in the optic nerves of the TBI mice. Increased DBSI axon volume, decreased DBSI λ||, and elevated DBSI restricted fraction correlated with decreased SMI-312, decreased SMI-31, and increased DAPI density, respectively, suggesting that DBSI can detect coexisting pathologies in the optic nerves of TBI mice. Conclusion: DBSI provides an imaging modality capable of detecting subclinical changes of indirect TON in TBI mice.

15.
Transl Cancer Res ; 12(9): 2294-2307, 2023 Sep 30.
Article in English | MEDLINE | ID: mdl-37859742

ABSTRACT

Background: Ferroptosis is defined as an iron-dependent non-apoptotic form of programmed cell death. Dihydroorotate dehydrogenase (DHODH) is a newly discovered anti-ferroptosis molecule independent from the well-known GPX4 and AIFM2. However, the expression pattern and especially the functional roles of DHODH during cancer cell death are generally unknown. Methods: The databases of Gene Expression Profiling Interactive Analysis (GEPIA), Kaplan-Meier Plotter, and Tumor Immune Estimation Resource (TIMER), and methods of colony formation, Cell Counting Kit-8 (CCK-8), adenosine triphosphate (ATP) detection, RNA-seq, quantitative reverse transcription polymerase chain reaction (qRT-PCR), and western blotting were used to analyze the expression level, prognostic role, and oncogenic roles of DHODH in cancers. Results: DHODH overexpression was identified in many types of cancers including esophageal carcinoma (ESCA), colon adenocarcinoma (COAD), rectum adenocarcinoma (READ), and so on. Silence and inactivation of DHODH decreased the abilities of cell proliferation, colony formation, and cellular ATP levels both in esophageal squamous cell carcinoma (ESCC) and colorectal cancer (CRC) cells. Z-VAD-FMK (an apoptosis inhibitor) partially rescued blockade of DHODH-induced death of ESCC cells, and ferroptosis inhibitors (ferrostatin-1 and liproxstatin-1) together with the necroptosis inhibitor (necrostatin-1) partially rescued inhibition of DHODH-induced death of CRC cells, respectively. Pathways including rheumatoid arthritis, salmonella infection, cytokine-cytokine receptor interaction, pertussis, and nuclear factor-κB (NF-κB) were enriched in DHODH-silenced ESCC cells. Conclusions: Overexpression of DHODH augments cell proliferation and suppresses cell death in ESCC and CRC, and DHODH might be developed as a potential anticancer target.

16.
Medicine (Baltimore) ; 102(43): e35684, 2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37904447

ABSTRACT

At present, detailed demographic and clinical data of moyamoya disease (MMD) in the population of Southeast China are lacking. Therefore, this study aimed to evaluate the epidemiological and clinical features of MMD in Southeast China. Our cohort included 170 patients diagnosed with MMD over the preceding 5 years. Clinical characteristics were obtained through a retrospective chart review, while follow-up information and outcomes were obtained through clinical visits and imaging. The median age at symptom onset was 49 years (range 4-73), with a peak in the age distribution observed at 41 to 60 years. The female-to-male ratio was 1.125 (90/80), and the ratio of the ischemic type to the hemorrhagic type was 2.33 (119/50). The most common initial symptom was an ischemic event. The 5-year Kaplan-Meier risk of stroke was 4.9% for all patients treated with surgical revascularization. Of all patients, 83.9% were able to live independently with no significant disability, and 89.8% showed improved cerebral hemodynamics. Our study provided detailed demographic and clinical data on Southeastern Chinese patients with MMD, which was consistent with findings in other parts of China. Raising clinical awareness of MMD in primary hospitals is important to facilitate early diagnosis and timely treatment of MMD patients.


Subject(s)
Cerebral Revascularization , Moyamoya Disease , Humans , Male , Female , Child, Preschool , Child , Adolescent , Young Adult , Adult , Middle Aged , Aged , Retrospective Studies , Moyamoya Disease/diagnosis , Moyamoya Disease/epidemiology , Moyamoya Disease/surgery , Treatment Outcome , China/epidemiology , Cerebral Revascularization/methods
17.
Food Funct ; 14(21): 9841-9856, 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37850547

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is the third leading cause of death worldwide and characterized by emphysema, small airway remodeling and mucus hypersecretion. Citrus peels have been widely used as food spices and in traditional Chinese medicine for chronic lung disease. Given that citrus peels are known for containing antioxidants and anti-inflammatory compounds, we hypothesize that citrus peel intake can suppress oxidative stress and inflammatory response to air pollution exposure, thereby alleviating COPD-like pathologies. This study aimed to investigate the efficacy of citrus peel extract, namely Guang Chenpi (GC), in preventing the development of COPD induced by diesel exhaust particles (DEPs) and its potential mechanism. DEP-induced COPD-like lung pathologies, inflammatory responses and oxidative stress with or without GC treatment were examined in vivo and in vitro. Our in vivo study showed that GC was effective in decreasing inflammatory cell counts and inflammatory mediator (IL-17A and TNF-α) concentrations in bronchoalveolar lavage fluid (BALF). Pretreatment with GC extract also significantly decreased oxidative stress in the serum and lung tissue of DEP-induced COPD rats. Furthermore, GC pretreatment effectively reduced goblet cell hyperplasia (PAS positive cells) and fibrosis of the small airways, decreased macrophage infiltration as well as carbon loading in the peripheral lungs, and facilitated the resolution of emphysema and small airway remodeling in DEP-induced COPD rats. An in vitro free radical scavenging assay revealed robust antioxidant potential of GC in scavenging DPPH free radicals. Moreover, GC demonstrated potent capacities in reducing ROS production and enhancing SOD activity in BEAS-2B cells stimulated by DEPs. GC treatment significantly attenuated the increased level of IL-8 and MUC5AC from DEP-treated BEAS-2B cells. Mechanistically, GC treatment upregulated the protein level of Nrf-2 and could function via MAPK/NF-κB signaling pathways by suppressing the phosphorylation of p38, JNK and p65. Citrus peel extract is effective in decreasing oxidative stress and inflammatory responses of the peripheral lungs to DEP exposure. These protective effects further contributed to the resolution of COPD-like pathologies.


Subject(s)
Citrus , Emphysema , Pulmonary Disease, Chronic Obstructive , Rats , Animals , Vehicle Emissions/toxicity , Citrus/metabolism , Airway Remodeling , Pulmonary Disease, Chronic Obstructive/drug therapy , Lung , Oxidative Stress , Antioxidants/pharmacology , Antioxidants/metabolism , Bronchoalveolar Lavage Fluid/chemistry , Emphysema/metabolism
18.
Ecotoxicol Environ Saf ; 266: 115550, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37832486

ABSTRACT

Microglia-mediated chronic neuroinflammation has been associated with cognitive decline induced by rotenone, a well-known neurotoxic pesticide used in agriculture. However, the mechanisms remain unclear. This work aimed to elucidate the role of complement receptor 3 (CR3), a highly expressed receptor in microglia, in cognitive deficits induced by rotenone. Rotenone up-regulated the expression of CR3 in the hippocampus and cortex area of mice. CR3 deficiency markedly ameliorated rotenone-induced cognitive impairments, neurodegeneration and phosphorylation (Ser129) of α-synuclein in mice. CR3 deficiency also attenuated rotenone-stimulated microglial M1 activation. In microglial cells, siRNA-mediated knockdown of CR3 impeded, while CR3 activation induced by LL-37 exacerbated, rotenone-induced microglial M1 activation. Mechanistically, CR3 deficiency blocked rotenone-induced activation of nuclear factor κB (NF-κB), signal transducer and activator of transcription 1 (STAT1) and STAT3 signaling pathways. Pharmacological inhibition of NF-κB or STAT3 but not STAT1 was confirmed to suppress microglial M1 activation elicited by rotenone. Further study revealed that CR3 deficiency or knockdown also reduced rotenone-induced expression of C3, an A1 astrocyte marker, and production of microglial C1q, TNFα and IL-1α, a cocktail for activated microglia to induce neurotoxic A1 astrocytes, via NF-κB and STAT3 pathways. Finally, a small molecule modulator of CR3 efficiently mitigated rotenone-elicited cognitive deficits in mice even administered after the establishment of cognitive dysfunction. Taken together, our findings demonstrated that CR3 is a key factor in mediating neurotoxic glial activation and subsequent cognitive impairments in rotenone-treated mice, giving novel insights into the immunopathogenesis of cognitive impairments in pesticide-related Parkinsonism.


Subject(s)
Cognitive Dysfunction , Pesticides , Mice , Animals , NF-kappa B/genetics , NF-kappa B/metabolism , Rotenone/toxicity , Cognitive Dysfunction/chemically induced , Receptors, Complement
19.
Neurosurg Focus ; 55(3): E7, 2023 09.
Article in English | MEDLINE | ID: mdl-37657107

ABSTRACT

OBJECTIVE: Diffusion basis spectrum imaging (DBSI) has shown promise in evaluating cervical spinal cord structural changes in patients with cervical spondylotic myelopathy (CSM). DBSI may also be valuable in the postoperative setting by serially tracking spinal cord microstructural changes following decompressive cervical spine surgery. Currently, there is a paucity of studies investigating this topic, likely because of challenges in resolving signal distortions from spinal instrumentation. Therefore, the objective of this study was to assess the feasibility of DBSI metrics extracted from the C3 spinal level to evaluate CSM patients postoperatively. METHODS: Fifty CSM patients and 20 healthy controls were enrolled in a single-center prospective study between 2018 and 2020. All patients and healthy controls underwent preoperative and postoperative diffusion-weighted MRI (dMRI) at a 2-year follow-up. All CSM patients underwent decompressive cervical surgery. The modified Japanese Orthopaedic Association (mJOA) score was used to categorize CSM patients as having mild, moderate, or severe myelopathy. DBSI metrics were extracted from the C3 spinal cord level to minimize image artifact and reduce partial volume effects. DBSI anisotropic tensors evaluated white matter tracts through fractional anisotropy, axial diffusivity, radial diffusivity, and fiber fraction. DBSI isotropic tensors assessed extra-axonal pathology through restricted and nonrestricted fractions. RESULTS: Of the 50 CSM patients, both baseline and postoperative dMR images with sufficient quality for analysis were obtained in 27 patients. These included 15 patients with mild CSM (mJOA scores 15-17), 7 with moderate CSM (scores 12-14), and 5 with severe CSM (scores 0-11), who were followed up for a mean of 23.5 (SD 4.1, range 11-31) months. All preoperative C3-level DBSI measures were significantly different between CSM patients and healthy controls (p < 0.05), except DBSI fractional anisotropy (p = 0.31). At the 2-year follow-up, the same significance pattern was found between CSM patients and healthy controls, except DBSI radial diffusivity was no longer statistically significant (p = 0.75). When assessing change (i.e., postoperative - preoperative values) in C3-level DBSI measures, CSM patients exhibited significant decreases in DBSI radial diffusivity (p = 0.02), suggesting improvement in myelin integrity (i.e., remyelination) at the 2-year follow-up. Among healthy controls, there was no significant difference in DBSI metrics over time. CONCLUSIONS: DBSI metrics derived from dMRI at the C3 spinal level can be used to provide meaningful insights into representations of the spinal cord microstructure of CSM patients at baseline and 2-year follow-up. DBSI may have the potential to characterize white matter tract recovery and inform outcomes following decompressive cervical surgery for CSM.


Subject(s)
Spinal Cord Diseases , Humans , Feasibility Studies , Prospective Studies , Cervical Vertebrae/diagnostic imaging , Cervical Vertebrae/surgery
20.
J Cancer Res Clin Oncol ; 149(17): 16055-16067, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37695389

ABSTRACT

PURPOSE: Glioblastoma is one of the malignant tumors with poor prognosis and no effective treatment is available at present. METHODS: To study the effect of cordycepin combined with temozolomide on glioblastoma, we explored the effect of the combination based on network pharmacology and biological verification. RESULTS: It was found that the drug combination significantly inhibited the cell growth, proliferation, migration and invasion of LN-229 cells. Drug combination inhibited epithelial-mesenchymal transition (EMT) by up-regulating the expression of E-cadherin and suppressing the expression of N-cadherin, Zeb1 and Twist1. Through network pharmacology, we further explored the molecular mechanism of drug combination against glioblastoma, and 36 drug-disease common targets were screened. The GO biological process analysis included 44 items (P < 0.01), which mainly involved the regulation of apoptosis, cell proliferation, cell migration, etc. The enrichment analysis of KEGG pathways included 28 pathways (P < 0.05), and the first four pathways were "MicroRNA in cancer, Proteoglycans in cancer, Pathways in cancer and PI3K-AKT signaling pathway". We detected the expression of important genes in the pathways and PPI network, and the results showed that the drug combination down-regulated NFKB1, MYC, MMP-9, MCL1, CTNNB1, and up-regulated PDCD4. CONCLUSION: Cordycepin combined with temozolomide may down-regulate MYC through "MicroRNA in cancer, Proteoglycans in cancer, Pathways in cancer and PI3K-AKT signaling pathway", which in turn regulate the expression of MCL1, CTNNB1, MMP9, PDCD4, thus regulating cell proliferation, migration and apoptosis in glioblastoma.


Subject(s)
Glioblastoma , MicroRNAs , Humans , Temozolomide/pharmacology , Temozolomide/therapeutic use , Glioblastoma/drug therapy , Glioblastoma/genetics , Glioblastoma/pathology , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Myeloid Cell Leukemia Sequence 1 Protein/therapeutic use , Cell Line, Tumor , MicroRNAs/genetics , Cell Proliferation , Drug Combinations , Proteoglycans/metabolism , Proteoglycans/pharmacology , Proteoglycans/therapeutic use , RNA-Binding Proteins , Apoptosis Regulatory Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...