Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.507
Filter
1.
BMC Anesthesiol ; 24(1): 234, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38997624

ABSTRACT

BACKGROUND: Postoperative delirium (POD) often occurs in oncology patients, further increasing the medical and financial burden. Robotic technology in lower abdominal tumors resection reduces surgical trauma but increases risks such as carbon dioxide (CO2) absorption. This study aimed to investigate the differences in their occurrence of POD at different end-tidal CO2 levels. METHOD: This study was approved by the Ethics Committee of Affiliated Hospital of He Bei University (HDFY-LL-2022-169). The study was registered with the Chinese Clinical Trials Registry on URL: http://www.chictr.org.cn , Registry Number: ChiCTR2200056019 (Registry Date: 27/08/2022). In patients scheduled robotic lower abdominal tumor resection from September 1, 2022 to December 31, 2022, a comprehensive delirium assessment was performed three days postoperatively using the CAM scale with clinical review records. Intraoperative administration of different etCO2 was performed depending on the randomized grouping after intubation. Group L received lower level etCO2 management (31-40mmHg), and Group H maintained the higher level(41-50mmHg) during pneumoperitoneum. Data were analyzed using Pearson Chi-Square or Wilcoxon Rank Sum tests and multiple logistic regression. Preoperative mental status score, alcohol impairment score, nicotine dependence score, history of hypertension and diabetes, duration of surgery and worst pain score were included in the regression model along with basic patient information for covariate correction analysis. RESULTS: Among the 103 enrolled patients, 19 (18.4%) developed postoperative delirium. The incidence of delirium in different etCO2 groups was 21.6% in Group L and 15.4% in Group H, respectively, with no statistical differences. In adjusted multivariate analysis, age and during of surgery were statistically significant predictors of postoperative delirium. The breath-hold test was significantly lower postoperatively, but no statistical differences were found between two groups. CONCLUSION: With robotic assistant, the incidence of postoperative delirium in patients undergoing lower abdominal tumor resection was not modified by different end-tidal carbon dioxide management, however, age and duration of surgery were positively associated risk factors.


Subject(s)
Abdominal Neoplasms , Carbon Dioxide , Delirium , Postoperative Complications , Robotic Surgical Procedures , Humans , Male , Middle Aged , Robotic Surgical Procedures/methods , Female , Delirium/etiology , Delirium/epidemiology , Postoperative Complications/epidemiology , Abdominal Neoplasms/surgery , Aged , Adult
2.
Sensors (Basel) ; 24(13)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-39000820

ABSTRACT

The recognition of data matrix (DM) codes plays a crucial role in industrial production. Significant progress has been made with existing methods. However, for low-quality images with protrusions and interruptions on the L-shaped solid edge (finder pattern) and the dashed edge (timing pattern) of DM codes in industrial production environments, the recognition accuracy rate of existing methods sharply declines due to a lack of consideration for these interference issues. Therefore, ensuring recognition accuracy in the presence of these interference issues is a highly challenging task. To address such interference issues, unlike most existing methods focused on locating the L-shaped solid edge for DM code recognition, we in this paper propose a novel DM code recognition method based on locating the L-shaped dashed edge by incorporating the prior information of the center of the DM code. Specifically, we first use a deep learning-based object detection method to obtain the center of the DM code. Next, to enhance the accuracy of L-shaped dashed edge localization, we design a two-level screening strategy that combines the general constraints and central constraints. The central constraints fully exploit the prior information of the center of the DM code. Finally, we employ libdmtx to decode the content from the precise position image of the DM code. The image is generated by using the L-shaped dashed edge. Experimental results on various types of DM code datasets demonstrate that the proposed method outperforms the compared methods in terms of recognition accuracy rate and time consumption, thus holding significant practical value in an industrial production environment.

3.
Sci Rep ; 14(1): 15406, 2024 07 04.
Article in English | MEDLINE | ID: mdl-38965397

ABSTRACT

Patients with multiple myeloma (MM) experience relapse and drug resistance; therefore, novel treatments are essential. Clotrimazole (CTZ) is a wide-spectrum antifungal drug with antitumor activity. However, CTZ's effects on MM are unclear. We investigated CTZ's effect on MM cell proliferation and apoptosis induction mechanisms. CTZ's effects on MM.1S, NCI- H929, KMS-11, and U266 cell growth were investigated using Cell Counting Kit-8 (CCK-8) assay. The apoptotic cell percentage was quantified with annexin V-fluorescein isothiocyanate/7-amino actinomycin D staining. Mitochondrial membrane potential (MMP) and cell cycle progression were evaluated. Reactive oxygen species (ROS) levels were measured via fluorescence microscopy. Expression of apoptosis-related and nuclear factor (NF)-κB signaling proteins was analyzed using western blotting. The CCK-8 assay indicated that CTZ inhibited cell proliferation based on both dose and exposure time. Flow cytometry revealed that CTZ decreased apoptosis and MMP and induced G0/G1 arrest. Immunofluorescence demonstrated that CTZ dose-dependently elevated in both total and mitochondrial ROS production. Western blotting showed that CTZ enhanced Bax and cleaved poly ADP-ribose polymerase and caspase-3 while decreasing Bcl-2, p-p65, and p-IκBα. Therefore, CTZ inhibits MM cell proliferation by promoting ROS-mediated mitochondrial apoptosis, inducing G0/G1 arrest, inhibiting the NF-κB pathway, and has the potential for treating MM.


Subject(s)
Apoptosis , Cell Proliferation , Clotrimazole , Membrane Potential, Mitochondrial , Mitochondria , Multiple Myeloma , Reactive Oxygen Species , Humans , Multiple Myeloma/pathology , Multiple Myeloma/drug therapy , Multiple Myeloma/metabolism , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Reactive Oxygen Species/metabolism , Membrane Potential, Mitochondrial/drug effects , Clotrimazole/pharmacology , Resting Phase, Cell Cycle/drug effects , G1 Phase Cell Cycle Checkpoints/drug effects , Signal Transduction/drug effects , NF-kappa B/metabolism , Antineoplastic Agents/pharmacology , Cell Cycle Checkpoints/drug effects
4.
Article in English | MEDLINE | ID: mdl-38970800

ABSTRACT

The multiattribute method (MAM) has emerged as a powerful tool for simultaneously screening multiple product quality attributes of therapeutic antibodies. One such potential critical quality attribute (CQA) is glycation, a common modification that can impact the heterogeneity, functional activity, and immunogenicity of therapeutic antibodies. However, current methods for monitoring glycation levels in MAM are rare and not sufficiently rapid and accurate. In this study, an improved mass spectrometry (MS)-based MAM was developed to simultaneously monitor glycation and other quality attributes including afucosylation. The method was evaluated using two therapeutic antibodies with different glycosylation site numbers. Treatment with IdeS, Endo F2, and dithiothreitol generated three distinct subunits, and the glycation results obtained were similar to those treated with PNGase F, which is routinely used to release glycans; the sample processing time was greatly reduced while providing additional quality attribute information. The MS-based MAM was also employed to assess the glycation progression following forced glycation in various buffer solutions. A significant increase in oxidation was observed when forced glycation was conducted in an ammonium bicarbonate buffer solution, and a total of 23 potential glycation sites and 4 significantly oxidized sites were identified. Notably, we found that ammonium bicarbonate was found to specifically stimulate oxidation, while glycation had a synergistic effect on oxidation. These findings establish this study as a novel methodology for achieving a technologically advanced platform and concept that enhances the efficacy of product development and quality control, characterized by its broad-spectrum, rapid, and accurate nature.

5.
PLoS One ; 19(6): e0304478, 2024.
Article in English | MEDLINE | ID: mdl-38870180

ABSTRACT

In the context of the evolving landscape of reduction in carbon emissions and integration of renewable energy, this study uses system dynamics (SD) modeling to explore the interconnected dynamics of carbon trading (CT), tradable green certificate (TGC) trading, and electricity markets. Using differential equations with time delays, the study provides a comprehensive analysis of structural relationships and feedback mechanisms within and between these markets. Key findings reveal the intricate interplay between carbon prices, green certificate prices, and electricity prices under various coupling mechanisms. For example, under the three-market coupling mechanism, carbon trading prices stabilize around 150 Yuan/ton, while green certificate prices reach a peak of 0.45 Yuan/KWH, impacting electricity prices, which fluctuate between 0.33 and 1.09 Yuan / KWH during the simulation period. These quantitative results shed light on nuanced fluctuations in market prices and the dynamics of anticipated purchases and sales volumes within each market. The insights gleaned from this study offer valuable implications for policy makers and market stakeholders in navigating the complexities of carbon emission reduction strategies, the integration of renewable energy and market equilibrium. By understanding the dynamics of multi-market coupling, stakeholders can better formulate policies and strategies to achieve sustainable energy transitions and mitigate impacts of climate change.


Subject(s)
Carbon , Electricity , Renewable Energy/economics , Models, Economic , Commerce/economics , Models, Theoretical
6.
Environ Pollut ; 356: 124360, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38871171

ABSTRACT

Rapid advancements in nanotechnology have been integrated into various disciplines, leading to an increased prevalence of nanoparticle exposure. The widespread utilization of nanomaterials and heightened levels of particulate pollution have prompted government departments to intensify their focus on assessing the safety of nanoparticles (NPs). The cardiovascular system, crucial for maintaining human health, has emerged as vulnerable to damage from nanoparticle exposure. A mounting body of evidence indicates that interactions can occur when NPs come into contact with components of the cardiovascular system, contributing to adverse cardiovascular disease (CVD). However, the underlying molecular mechanisms driving these events remain elusive. This work provides a comprehensive review of recent advance on nanoparticle-induced adverse cardiovascular events and offers insight into the associated molecular mechanisms. Finally, the influencing factors of NPs-induced cardiovascular toxicity are discussed.

7.
Acad Radiol ; 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38890032

ABSTRACT

RATIONALE AND OBJECTIVES: The aim of this study was to ascertain whether the utilization of multiple b-value diffusion-weighted habitat imaging, a technique that depicts tumor heterogeneity, could aid in identifying breast cancer patients who would derive substantial benefit from neoadjuvant chemotherapy (NAC). MATERIALS AND METHODS: This prospective study enrolled 143 women (II-III breast cancer), who underwent multi-b-value diffusion-weighted imaging (DWI) in 3-T magnetic resonance (MR) before NAC. The patient cohort was partitioned into a training set (consisting of 100 patients, of which 36 demonstrated a pathologic complete response [pCR]) and a test set (featuring 43 patients, 16 of whom exhibited pCR). Utilizing the training set, predictive models for pCR, were constructed using different parameters: whole-tumor radiomics (ModelWH), diffusion-weighted habitat-imaging (ModelHabitats), conventional MRI features (ModelCF), along with combined models ModelHabitats+CF. The performance of these models was assessed based on the area under the receiver operating characteristic curve (AUC) and calibration slope. RESULTS: In the prediction of pCR, ModelWH, ModelHabitats, ModelCF, and ModelHabitats+CF achieved AUCs of 0.733, 0.722, 0.705, and 0.756 respectively, within the training set. These scores corresponded to AUCs of 0.625, 0.801, 0.700, and 0.824 respectively in the test set. The DeLong test revealed no significant difference between ModelWH and ModelHabitats (P = 0.182), between ModelHabitats and ModelHabitats+CF (P = 0.113). CONCLUSION: The habitat model we developed, incorporating first-order features along with conventional MRI features, has demonstrated accurate predication of pCR prior to NAC. This model holds the potential to augment decision-making processes in personalized treatment strategies for breast cancer.

8.
Toxicol Lett ; 398: 28-37, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38851367

ABSTRACT

This work investigated the influence of surface chirality on cellular internalization, cytotoxicity, and tissue distribution of silver nanoparticles (AgNPs). D-cysteine and L-cysteine are chiral forms of the amino acid cysteine. These enantiomers exhibit distinct spatial arrangements, with D-cysteine having a different configuration from L-cysteine. This structural dissimilarity can lead to variations in how these forms interact with biological systems, potentially impacting their cytotoxic responses. Four distinct types of AgNPs were synthesized, each possessing a unique surface coating: pristine AgNPs (pAgNPs), L-cysteine coated AgNPs (AgNPs@L-Cys), D-cysteine coated AgNPs (AgNPs@D-Cys), and racemic AgNPs coated with both L-Cys and D-Cys (AgNPs@L/D-Cys). We found chiral-dependent cytotoxicity of AgNPs on J774A.1 cells. Specifically, AgNPs@L-Cys exhibited the highest toxicity, and AgNPs@D-Cys exhibited the lowest toxicity. Meanwhile, the cellular uptake of the AgNPs correlated nicely with their cytotoxicity, with AgNPs@L-Cys being internalized to the greatest extent while AgNPs@D-Cys displays the least internalization. Scavenger receptors and clathrin predominantly mediate the cellular internalization of these AgNPs. Strikingly, the dissimilar cellular internalization and cytotoxicity of AgNPs with different chirality were eliminated upon protein corona coverage. Notably, following intravenous injection in mice, these four types of AgNPs showed similar patterns among various organs due to the inevitable protein adsorption in the bloodstream. These findings underscored the pivotal role of surface chirality in governing the biological interactions and toxicity of AgNPs.

9.
BMC Cardiovasc Disord ; 24(1): 307, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38886700

ABSTRACT

BACKGROUND: Carney syndrome is an uncommon autosomal disorder closely linked to mutations in the PRKAR1A gene. Skin lesions are the most pronounced feature of Carney syndrome, affecting over 80% of individuals with this condition. This syndrome is characterized by a triad of myxomas, skin pigmentation, and endocrine hyperfunction, featuring multiple endocrine neoplasms with skin and cardiac involvement. Dilated cardiomyopathy, a primary cardiomyopathy, is defined as the dilation and impaired systolic function of the left or both ventricles. Its clinical presentation varies from being asymptomatic to heart failure or sudden cardiac death, making it a leading global cause of heart failure. Currently, Dilated cardiomyopathy has an estimated prevalence of 1/2500-1/250 individuals, predominantly affecting those aged 30-40 years, with a male-to-female ratio of 3:1. This case report describes a heart failure patient with cardiac myxoma caused by Carney syndrome combined with dilated cardiomyopathy. The patient was successfully treated for heart failure by heart transplantation. CASE PRESENTATION: Herein, we report a case of heart failure due to Carney syndrome that resulted in cardiac myxoma combined with dilated cardiomyopathy. A 35-year-old male was admitted to the hospital three years ago because of sudden chest tightness and shortness of breath. Echocardiography indicated myxoma, and a combination of genetic screening and physical examination confirmed Carney syndrome with cardiac myxoma. Following symptomatic management, he was discharged. Surgical interventions were not considered at the time. However, the patient's chest tightness and shortness of breath symptoms worsened, and he returned to the hospital. A New York Heart Association grade IV heart function was confirmed, and echocardiography indicated the presence of dilated cardiomyopathy accompanied by cardiac myxoma. Ultimately, the patient's heart failure was successfully treated with heart transplantation. CONCLUSIONS: Cardiac myxoma caused by Carney syndrome combined with heart failure caused by dilated cardiomyopathy can be resolved by heart transplantation.


Subject(s)
Cardiomyopathy, Dilated , Carney Complex , Heart Failure , Heart Neoplasms , Heart Transplantation , Myxoma , Humans , Cardiomyopathy, Dilated/surgery , Cardiomyopathy, Dilated/etiology , Cardiomyopathy, Dilated/diagnosis , Cardiomyopathy, Dilated/diagnostic imaging , Male , Carney Complex/genetics , Carney Complex/diagnosis , Carney Complex/surgery , Carney Complex/complications , Adult , Myxoma/complications , Myxoma/surgery , Myxoma/diagnostic imaging , Myxoma/diagnosis , Myxoma/genetics , Heart Failure/etiology , Heart Failure/diagnosis , Heart Failure/surgery , Heart Neoplasms/surgery , Heart Neoplasms/complications , Heart Neoplasms/diagnostic imaging , Heart Neoplasms/diagnosis , Heart Neoplasms/genetics , Treatment Outcome , Cyclic AMP-Dependent Protein Kinase RIalpha Subunit/genetics
10.
Chem Sci ; 15(25): 9806-9813, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38939133

ABSTRACT

Carbon quantum dots (C-dots) have developed into potential nanomaterials for lighting, catalysis and bioimaging because of their excellent optical properties and good biocompatibility. However, it is still a challenge to produce efficient red emitting carbon quantum dots (R-C-dots) due to their obscure formation mechanism. This work offered a method to reveal the formation process from the precursor o-phenylenediamine (o-PDA) to R-C-dots. Different from traditional hydrothermal reactions, R-C-dots were synthesized at relatively low temperature and ambient pressure. The pre-oxidation intermediate aminophenol played an important role in the synthesis of R-C-dots, which further cross-linked and polymerized with o-PDA in an acid environment to form R-C-dots. The obtained R-C-dots had a photoluminescence quantum yield of up to 33.26% and excellent two-photon fluorescence properties. A white light-emitting diode (WLED) based on R-C-dots as the red phosphor exhibited standard white light CIE color coordinates of (0.33, 0.33) with a correlated color temperature of 5342 K and a high color rendering index (CRI) of 94.5. The obtained rendering index is the highest value among WLEDs with color coordinates of (0.33, 0.33) based on C-dots. This work provides a new perspective for the controllable large-scale synthesis of red C-dots.

11.
Cell Death Discov ; 10(1): 304, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38926350

ABSTRACT

Lymph node metastasis (LNM) facilitates distant tumor colonization and leads to the high mortality in patients with intrahepatic cholangiocarcinoma (ICC). However, it remains elusive how ICC cells subvert immune surveillance within the primary tumor immune microenvironment (TIME) and subsequently metastasize to lymph nodes (LNs). In this study, scRNA-seq and bulk RNA-seq analyses identified decreased infiltration of dendritic cells (DCs) into primary tumor sites of ICC with LNM, which was further validated via dual-color immunofluorescence staining of 219 surgically resected ICC samples. Tumor-infiltrating DCs correlated with increased CD8+ T cell infiltration and better prognoses in ICC patients. Mechanistically, ß-catenin-mediated CXCL12 suppression accounted for the impaired DC recruitment in ICC with LNM. Two mouse ICC cell lines MuCCA1 and mIC-23 cells were established from AKT/NICD or AKT/YAP-induced murine ICCs respectively and were utilized to construct the footpad tumor LNM model. We found that expansion and activation of conventional DCs (cDCs) by combined Flt3L and poly(I:C) (FL-pIC) therapy markedly suppressed the metastasis of mIC-23 cells to popliteal LNs. Moreover, ß-catenin inhibition restored the defective DC infiltration into primary tumor sites and reduced the incidence of LNM in ICC. Collectively, our findings identify tumor cell intrinsic ß-catenin activation as a key mechanism for subverting DC-mediated anti-tumor immunity in ICC with LNM. FL-pIC therapy or ß-catenin inhibitor could merit exploration as a potential regimen for mitigating ICC cell metastasis to LNs and achieving effective tumor immune control.

12.
Molecules ; 29(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38930966

ABSTRACT

Covalent organic frameworks (COFs) have emerged as promising renewable electrode materials for LIBs and gained significant attention, but their capacity has been limited by the densely packed 2D layer structures, low active site availability, and poor electronic conductivity. Combining COFs with high-conductivity MXenes is an effective strategy to enhance their electrochemical performance. Nevertheless, simply gluing them without conformal growth and covalent linkage restricts the number of redox-active sites and the structural stability of the composite. Therefore, in this study, a covalently assembled 3D COF on Ti3C2 MXenes (Ti3C2@COF) is synthesized and serves as an ultralong cycling electrode material for LIBs. Due to the covalent bonding between the COF and Ti3C2, the Ti3C2@COF composite exhibits excellent stability, good conductivity, and a unique 3D cavity structure that enables stable Li+ storage and rapid ion transport. As a result, the Ti3C2-supported 3D COF nanosheets deliver a high specific capacity of 490 mAh g-1 at 0.1 A g-1, along with an ultralong cyclability of 10,000 cycles at 1 A g-1. This work may inspire a wide range of 3D COF designs for high-performance electrode materials.

13.
Acta Radiol ; : 2841851241259924, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38881364

ABSTRACT

BACKGROUND: Few studies have investigated the feasibility of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) using a free-breathing golden-angle radial stack-of-stars volume-interpolated breath-hold examination (FB radial VIBE) sequence in the lung. PURPOSE: To investigate whether DCE-MRI using the FB radial VIBE sequence can assess morphological and kinetic parameters in patients with pulmonary lesions, with computed tomography (CT) as the reference. MATERIAL AND METHODS: In total, 43 patients (30 men; mean age = 64 years) with one lesion each were prospectively enrolled. Morphological and kinetic features on MRI were calculated. The diagnostic performance of morphological MR features was evaluated using a receiver operating characteristic (ROC) curve. Kinetic features were compared among subgroups based on histopathological subtype, lesion size, and lymph node metastasis. RESULTS: The maximum diameter was not significantly different between CT and MRI (3.66 ± 1.62 cm vs. 3.64 ± 1.72 cm; P = 0.663). Spiculation, lobulation, cavitation or bubble-like areas of low attenuation, and lymph node enlargement had an area under the ROC curve (AUC) >0.9, while pleural indentation yielded an AUC of 0.788. The lung cancer group had significantly lower Ktrans, Ve, and initial AUC values than the other cause inflammation group (0.203, 0.158, and 0.589 vs. 0.597, 0.385, and 1.626; P < 0.05) but significantly higher values than the tuberculosis group (P < 0.05). CONCLUSION: Morphology features derived from FB radial VIBE have high correlations with CT, and kinetic analyses show significant differences between benign and malignant lesions. DCE-MRI with FB radial VIBE could serve as a complementary quantification tool to CT for radiation-free assessments of lung lesions.

14.
ACS Appl Mater Interfaces ; 16(26): 33981-33992, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38897966

ABSTRACT

To meet evolving humidity monitoring needs, the development of flexible, high-performance humidity sensors is crucial. This study introduces an innovative flexible humidity sensor using a single-step laser scribing technique to fabricate a flexible in situ Co3O4 nanoparticle-embedded laser-induced graphene (Co3O4-LIG) composite electrode. Compared to conventional LIG electrodes, the Co3O4-LIG electrode exhibits improved conductivity and hydrophilicity, enhancing charge transfer and water molecule affinity. The unique two-dimensional structure and exceptional water permeability of graphene oxide (GO) combine with the rapid water response and high specific surface area of carboxylated multiwalled carbon nanotubes (MWCNTs), thereby assuming a crucial function in the modification and optimization of the performance of humidity sensors. Through the application of a homogenously blended aqueous solution comprising GO and MWCNTs in precise proportions onto the Co3O4-LIG composite electrode, an excellent humidity-responsive layer is established, culminating in the realization of a cutting-edge GO-MWCNTs@Co3O4-LIG flexible humidity sensor. Noteworthy attributes of this sensor include a heightened sensitivity [959.1% (ΔR/R0)], rapid response and recovery times (within 5 and 26 s, respectively), and a noteworthy linearity (R2 = 0.994) across a relative humidity range of 14 to 95%. The findings presented herein offer valuable insights and a practical blueprint for the design and production of flexible humidity sensors.

15.
Eur Urol Oncol ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38862340

ABSTRACT

BACKGROUND AND OBJECTIVE: Oligometastatic castration-sensitive prostate cancer (omCSPC) represents an early state in the progression of metastatic disease for which patients experience better outcomes in comparison to those with higher disease burden. Despite the generally more indolent nature, there is still much heterogeneity, with some patients experiencing a more aggressive clinical course unexplained by clinical features alone. Our aim was to investigate correlation of tumor genomics with the mode of progression (MOP) and pattern of failure (POF) following first treatment (metastasis-directed and/or systemic therapy) for omCSPC. METHODS: We performed an international multi-institutional retrospective study of men treated for metachronous omCSPC who underwent tumor next-generation sequencing with at least 1 yr of follow-up after their first treatment. Descriptive MOP and POF results are reported with respect to the presence of genomic alterations in pathways of interest. MOP was defined as class I, long-term control (LTC; no radiographic progression at last follow-up), class II, oligoprogression (1-3 lesions), or class III, polyprogression (≥4 lesions). POF included the location of lesions at first failure. Genomic pathways of interest included TP53, ATM, RB1, BRCA1/2, SPOP, and WNT (APC, CTNNB1, RNF43). Genomic associations with MOP/POF were compared using χ2 tests. Exploratory analyses revealed that the COSMIC mutational signature and differential gene expression were also correlated with MOP/POF. Overall survival (OS) was calculated via the Kaplan-Meier method from the time of first failure. KEY FINDINGS AND CLINICAL IMPLICATIONS: We included 267 patients in our analysis; the majority had either one (47%) or two (30%) metastatic lesions at oligometastasis. The 3-yr OS rate was significantly associated with MOP (71% for polyprogression vs 91% for oligoprogression; p = 0.005). TP53 mutation was associated with a significantly lower LTC rate (27.6% vs 42.3%; p = 0.04) and RB1 mutation was associated with a high rate of polyprogression (50% vs 19.9%; p = 0.022). Regarding POF, bone failure was significantly more common with tumors harboring TP53 mutations (44.8% vs25.9%; p = 0.005) and less common with SPOP mutations (7.1% vs 31.4%; p = 0.007). Visceral failure was more common with tumors harboring either WNT pathway mutations (17.2% vs 6.8%, p = 0.05) or SPOP mutations (17.9% vs 6.3%; p = 0.04). Finally, visceral and bone failures were associated with distinct gene-expression profiles. CONCLUSIONS AND CLINICAL IMPLICATIONS: Tumor genomics provides novel insight into MOP and POF following treatment for metachronous omCSPC. Patients with TP53 and RB1 mutations have a higher likelihood of progression, and TP53, SPOP, and WNT pathway mutations may have a role in metastatic organotropism. PATIENT SUMMARY: We evaluated cancer progression after a first treatment for metastatic prostate cancer with up to five metastases. We found that mutations in certain genes were associated with the location and extent of further metastasis in these patients.

16.
Sci Rep ; 14(1): 13215, 2024 06 08.
Article in English | MEDLINE | ID: mdl-38851842

ABSTRACT

Using a curved carbon-fiber plate (CFP) in running shoes may offer notable performance benefit over flat plates, yet there is a lack of research exploring the influence of CFP geometry on internal foot loading during running. The objective of this study was to investigate the effects of CFP mechanical characteristics on forefoot biomechanics in terms of plantar pressure, bone stress distribution, and contact force transmission during a simulated impact peak moment in forefoot strike running. We employed a finite element model of the foot-shoe system, wherein various CFP configurations, including three stiffnesses (stiff, stiffer, and stiffest) and two shapes (flat plate (FCFP) and curved plate (CCFP)), were integrated into the shoe sole. Comparing the shoes with no CFP (NCFP) to those with CFP, we consistently observed a reduction in peak forefoot plantar pressure with increasing CFP stiffness. This decrease in pressure was even more notable in a CCFP demonstrating a further reduction in peak pressure ranging from 5.51 to 12.62%, compared to FCFP models. Both FCFP and CCFP designs had a negligible impact on reducing the maximum stress experienced by the 2nd and 3rd metatarsals. However, they greatly influenced the stress distribution in other metatarsal bones. These CFP designs seem to optimize the load transfer pathway, enabling a more uniform force transmission by mainly reducing contact force on the medial columns (the first three rays, measuring 0.333 times body weight for FCFP and 0.335 for CCFP in stiffest condition, compared to 0.373 in NCFP). We concluded that employing a curved CFP in running shoes could be more beneficial from an injury prevention perspective by inducing less peak pressure under the metatarsal heads while not worsening their stress state compared to flat plates.


Subject(s)
Running , Shoes , Running/physiology , Humans , Biomechanical Phenomena , Pressure , Carbon Fiber/chemistry , Forefoot, Human/physiology , Finite Element Analysis , Stress, Mechanical , Weight-Bearing/physiology , Carbon/chemistry , Equipment Design , Foot/physiology
17.
J Am Coll Health ; : 1-12, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38848250

ABSTRACT

Previous research on college campus environments, student mental health, and COVID-19 has primarily focused on individual-level factors, with limited attention to the broader institutional characteristics. Objective and Methods: Using the national survey data from the American College Health Association, this study examines the influence of both individual-level and institutional-level characteristics on college students' stress, psychological distress, and psychological well-being, before and during COVID-19. Results: (1) COVID-19 significantly impacted students' mental health; (2) institutional-level factors, such as school size, locale, region, and religiously affiliation, were significant predictors of mental health outcomes; and (3) individual-level variables, including gender, age, race/ethnicity, relationship status, moderated the relationship between COVID-19 and mental health. Conclusion: This study suggests the need to consider various institutional contexts in future efforts to understand predictors of mental health conditions and resilience.

18.
J Hazard Mater ; 474: 134734, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38850937

ABSTRACT

Fast and real-time detection of trace Hg(Ⅱ) by fluorescent probes under acidic conditions is urgently required due to the high toxicity and accessibility to creatures and human being. However, fluorescent probes for Hg(Ⅱ) detection in environmental samples are rarely reported due to the protonation potential of acidic mercury sources. In this study, the SD probe was developed by 5-(p-dimethylaminobenzylidene) rhodanine (DMABR) loaded on sepiolite by hydrothermal treatment, and showed excellent Hg(Ⅱ) detection performances for mercury sources at pH 4-10 due to buffering ability of the hyperconjugated lactam rings. Sepiolite functioned as the support skeleton to decrease intermolecular transition, and thus increased the sensitivity. At pH 4, the SD probe showed high selectivity and sensitivity for Hg(Ⅱ) among various species, with low LOD and binding constant of 4.78 × 10-9 M and 1.34 × 106 M-1, respectively. Through DFT calculations, MAS 1H NMR and 2D-COS analysis, the detection mechanism was demonstrated as SN1 substitution of the spontaneous leaving H on amino groups in the transient state during tautomeric equilibrium, rather than the expected high-affinity sulphydryl. Additionally, the SD probe exhibited promising potential in quantifying water-soluble and bioavailable Hg(Ⅱ) in acidic polluted soil and water samples. Moreover, real-time detection was realized by paper-based strips.

19.
Dalton Trans ; 53(27): 11242-11246, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38919991

ABSTRACT

Herein, we report a composite COF material loaded with a Pt nanoenzyme and an organic photosensitizer BODIPY, synthesized via a stepwise post-synthetic modification. The obtained Pt@COF-BDP nanoparticles can efficiently and continuously convert H2O2 to O2, thereby increasing the efficiency of single-linear oxygen production and achieving efficient tumor inhibition.


Subject(s)
Boron Compounds , Metal-Organic Frameworks , Photochemotherapy , Photosensitizing Agents , Platinum , Boron Compounds/chemistry , Boron Compounds/pharmacology , Humans , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemical synthesis , Platinum/chemistry , Platinum/pharmacology , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Metal-Organic Frameworks/chemical synthesis , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Mice , Nanoparticles/chemistry , Tumor Hypoxia/drug effects , Hydrogen Peroxide/chemistry
20.
Environ Sci Technol ; 58(27): 12167-12178, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38920332

ABSTRACT

Herein, we propose preferential dissolution paired with Cu-doping as an effective method for synergistically modulating the A- and B-sites of LaMnO3 perovskite. Through Cu-doping into the B-sites of LaMnO3, specifically modifying the B-sites, the double perovskite La2CuMnO6 was created. Subsequently, partial La from the A-sites of La2CuMnO6 was etched using HNO3, forming novel La2CuMnO6/MnO2 (LCMO/MnO2) catalysts. The optimized catalyst, featuring an ideal Mn:Cu ratio of 4.5:1 (LCMO/MnO2-4.5), exhibited exceptional catalytic ozonation performance. It achieved approximately 90% toluene degradation with 56% selectivity toward CO2, even under ambient temperature (35 °C) and a relatively humid environment (45%). Modulation of A-sites induced the elongation of Mn-O bonds and decrease in the coordination number of Mn-O (from 6 to 4.3) in LCMO/MnO2-4.5, resulting in the creation of abundant multivalent Mn and oxygen vacancies. Doping Cu into B-sites led to the preferential chemisorption of toluene on multivalent Cu (Cu(I)/Cu(II)), consistent with theoretical predictions. Effective electronic supplementary interactions enabled the cycling of multiple oxidation states of Mn for ozone decomposition, facilitating the production of reactive oxygen species and the regeneration of oxygen vacancies. This study establishes high-performance perovskites for the synergistic regulation of O3 and toluene, contributing to cleaner and safer industrial activities.


Subject(s)
Ozone , Toluene , Catalysis , Ozone/chemistry , Toluene/chemistry , Titanium/chemistry , Oxides/chemistry , Calcium Compounds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...