Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Publication year range
1.
Article in English | WPRIM (Western Pacific) | ID: wpr-727586

ABSTRACT

The aim of the present study was to examine the effects of preemptive analgesia on the development of trigeminal neuropathic pain. For this purpose, mechanical allodynia was evaluated in male Sprague-Dawley rats using chronic constriction injury of the infraorbital nerve (CCI-ION) and perineural application of 2% QX-314 to the infraorbital nerve. CCI-ION produced severe mechanical allodynia, which was maintained until postoperative day (POD) 30. An immediate single application of 2% QX-314 to the infraorbital nerve following CCI-ION significantly reduced neuropathic mechanical allodynia. Immediate double application of QX-314 produced a greater attenuation of mechanical allodynia than a single application of QX-314. Immediate double application of 2% QX-314 reduced the CCI-ION-induced upregulation of GFAP and p-p38 expression in the trigeminal ganglion. The upregulated p-p38 expression was co-localized with NeuN, a neuronal cell marker. We also investigated the role of voltage-gated sodium channels (Navs) in the antinociception produced by preemptive application of QX-314 through analysis of the changes in Nav expression in the trigeminal ganglion following CCI-ION. Preemptive application of QX-314 significantly reduced the upregulation of Nav1.3, 1.7, and 1.9 produced by CCI-ION. These results suggest that long-lasting blockade of the transmission of pain signaling inhibits the development of neuropathic pain through the regulation of Nav isoform expression in the trigeminal ganglion. Importantly, these results provide a potential preemptive therapeutic strategy for the treatment of neuropathic pain after nerve injury.


Subject(s)
Animals , Humans , Male , Rats , Analgesia , Constriction , Hyperalgesia , Neuralgia , Neurons , Rats, Sprague-Dawley , Sodium Channels , Trigeminal Ganglion , Up-Regulation , Voltage-Gated Sodium Channels
2.
Article in Korean | WPRIM (Western Pacific) | ID: wpr-740074

ABSTRACT

The aim of the present study was to evaluate the central antinociceptive effects of eugenol after intraperitoneal administration. Experiments were carried out using male Sprague-Dawley rats. Subcutaneous injection of 5% formalin-induced nociceptive behavioral responses was used as the pain model. Subcutaneous injection of 5% formalin significantly produced nociceptive responses by increasing the licking time during nociceptive behavior. Subsequent intraperitoneal injection of 100 mg/kg of eugenol led to a significant decrease in the licking time. However, low dose of eugenol (50 mg/kg) did not affect the nociceptive behavioral responses produced by subcutaneous injection of formalin. Intrathecal injection of 30 µg of naloxone, an opioid receptor antagonist, significantly blocked antinociceptive effects produced by intraperitoneal injection of eugenol. Neither intrathecal injection of methysergide (30 µg), a serotonin receptor antagonist nor phentolamine (30 µg), an α-adrenergic receptor antagonist influenced antinociceptive effects of eugenol, as compared to the vehicle treatment. These results suggest that central opioid pathway participates in mediating the antinociceptive effects of eugenol.


Subject(s)
Humans , Male , Eugenol , Formaldehyde , Injections, Intraperitoneal , Injections, Spinal , Injections, Subcutaneous , Methysergide , Naloxone , Negotiating , Phentolamine , Rats, Sprague-Dawley , Receptors, Opioid , Serotonin
SELECTION OF CITATIONS
SEARCH DETAIL
...