Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Cells ; 12(10)2023 05 14.
Article in English | MEDLINE | ID: mdl-37408221

ABSTRACT

We have recently reported that in G2-phase cells (but not S-phase cells) sustaining low loads of DNA double-strand break (DSBs), ATM and ATR regulate the G2-checkpoint epistatically, with ATR at the output-node, interfacing with the cell cycle through Chk1. However, although inhibition of ATR nearly completely abrogated the checkpoint, inhibition of Chk1 using UCN-01 generated only partial responses. This suggested that additional kinases downstream of ATR were involved in the transmission of the signal to the cell cycle engine. Additionally, the broad spectrum of kinases inhibited by UCN-01 pointed to uncertainties in the interpretation that warranted further investigations. Here, we show that more specific Chk1 inhibitors exert an even weaker effect on G2-checkpoint, as compared to ATR inhibitors and UCN-01, and identify the MAPK p38α and its downstream target MK2 as checkpoint effectors operating as backup to Chk1. These observations further expand the spectrum of p38/MK2 signaling to G2-checkpoint activation, extend similar studies in cells exposed to other DNA damaging agents and consolidate a role of p38/MK2 as a backup kinase module, adding to similar backup functions exerted in p53 deficient cells. The results extend the spectrum of actionable strategies and targets in current efforts to enhance the radiosensitivity in tumor cells.


Subject(s)
Cell Cycle Proteins , Radiation, Ionizing , Phosphorylation , Ataxia Telangiectasia Mutated Proteins/metabolism , Cell Cycle Proteins/metabolism , DNA/metabolism
2.
Cells ; 12(11)2023 06 01.
Article in English | MEDLINE | ID: mdl-37296650

ABSTRACT

Alt-EJ is an error-prone DNA double-strand break (DSBs) repair pathway coming to the fore when first-line repair pathways, c-NHEJ and HR, are defective or fail. It is thought to benefit from DNA end-resection-a process whereby 3' single-stranded DNA-tails are generated-initiated by the CtIP/MRE11-RAD50-NBS1 (MRN) complex and extended by EXO1 or the BLM/DNA2 complex. The connection between alt-EJ and resection remains incompletely characterized. Alt-EJ depends on the cell cycle phase, is at maximum in G2-phase, substantially reduced in G1-phase and almost undetectable in quiescent, G0-phase cells. The mechanism underpinning this regulation remains uncharacterized. Here, we compare alt-EJ in G1- and G0-phase cells exposed to ionizing radiation (IR) and identify CtIP-dependent resection as the key regulator. Low levels of CtIP in G1-phase cells allow modest resection and alt-EJ, as compared to G2-phase cells. Strikingly, CtIP is undetectable in G0-phase cells owing to APC/C-mediated degradation. The suppression of CtIP degradation with bortezomib or CDH1-depletion rescues CtIP and alt-EJ in G0-phase cells. CtIP activation in G0-phase cells also requires CDK-dependent phosphorylation by any available CDK but is restricted to CDK4/6 at the early stages of the normal cell cycle. We suggest that suppression of mutagenic alt-EJ in G0-phase is a mechanism by which cells of higher eukaryotes maintain genomic stability in a large fraction of non-cycling cells in their organisms.


Subject(s)
DNA Repair , Nuclear Proteins , Phosphorylation , Nuclear Proteins/metabolism , DNA Breaks, Double-Stranded , Cell Cycle Checkpoints
3.
Int J Mol Sci ; 23(21)2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36361678

ABSTRACT

PTEN has been implicated in the repair of DNA double-strand breaks (DSBs), particularly through homologous recombination (HR). However, other data fail to demonstrate a direct role of PTEN in DSB repair. Therefore, here, we report experiments designed to further investigate the role of PTEN in DSB repair. We emphasize the consequences of PTEN loss in the engagement of the four DSB repair pathways-classical non-homologous end-joining (c-NHEJ), HR, alternative end-joining (alt-EJ) and single strand annealing (SSA)-and analyze the resulting dynamic changes in their utilization. We quantitate the effect of PTEN knockdown on cell radiosensitivity to killing, as well as checkpoint responses in normal and tumor cell lines. We find that disruption of PTEN sensitizes cells to ionizing radiation (IR). This radiosensitization is associated with a reduction in RAD51 expression that compromises HR and causes a marked increase in SSA engagement, an error-prone DSB repair pathway, while alt-EJ and c-NHEJ remain unchanged after PTEN knockdown. The G2-checkpoint is partially suppressed after PTEN knockdown, corroborating the associated HR suppression. Notably, PTEN deficiency radiosensitizes cells to PARP inhibitors, Olaparib and BMN673. The results show the crucial role of PTEN in DSB repair and show a molecular link between PTEN and HR through the regulation of RAD51 expression. The expected benefit from combination treatment with Olaparib or BMN673 and IR shows that PTEN status may also be useful for patient stratification in clinical treatment protocols combining IR with PARP inhibitors.


Subject(s)
DNA Breaks, Double-Stranded , DNA Repair , Humans , Poly(ADP-ribose) Polymerase Inhibitors , DNA End-Joining Repair , Homologous Recombination , Radiation Tolerance/genetics , Rad51 Recombinase/genetics , PTEN Phosphohydrolase/genetics
4.
Cancers (Basel) ; 14(22)2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36428712

ABSTRACT

BMN673 is a relatively new PARP inhibitor (PARPi) that exhibits superior efficacy in vitro compared to olaparib and other clinically relevant PARPi. BMN673, similar to most clinical PARPi, inhibits the catalytic activities of PARP-1 and PARP-2 and shows impressive anticancer potential as monotherapy in several pre-clinical and clinical studies. Tumor resistance to PARPi poses a significant challenge in the clinic. Thus, combining PARPi with other treatment modalities, such as radiotherapy (RT), is being actively pursued to overcome such resistance. However, the modest to intermediate radiosensitization exerted by olaparib, rucaparib, and veliparib, limits the rationale and the scope of such combinations. The recently reported strong radiosensitizing potential of BMN673 forecasts a paradigm shift on this front. Evidence accumulates that BMN673 may radiosensitize via unique mechanisms causing profound shifts in the balance among DNA double-strand break (DSB) repair pathways. According to one of the emerging models, BMN673 strongly inhibits classical non-homologous end-joining (c-NHEJ) and increases reciprocally and profoundly DSB end-resection, enhancing error-prone DSB processing that robustly potentiates cell killing. In this review, we outline and summarize the work that helped to formulate this model of BMN673 action on DSB repair, analyze the causes of radiosensitization and discuss its potential as a radiosensitizer in the clinic. Finally, we highlight strategies for combining BMN673 with other inhibitors of DNA damage response for further improvements.

5.
Int J Mol Sci ; 23(14)2022 Jul 06.
Article in English | MEDLINE | ID: mdl-35886852

ABSTRACT

The intra-S-phase checkpoint was among the first reported cell cycle checkpoints in mammalian cells. It transiently slows down the rate of DNA replication after DNA damage to facilitate repair and thus prevents genomic instability. The ionizing radiation (IR)-induced intra-S-phase checkpoint in mammalian cells is thought to be mainly dependent upon the kinase activity of ATM. Defects in the intra-S-phase checkpoint result in radio-resistant DNA synthesis (RDS), which promotes genomic instability. ATM belongs to the PI3K kinase family along with ATR and DNA-PKcs. ATR has been shown to be the key kinase for intra-S-phase checkpoint signaling in yeast and has also been implicated in this checkpoint in higher eukaryotes. Recently, contributions of DNA-PKcs to IR-induced G2-checkpoint could also be established. Whether and how ATR and DNA-PKcs are involved in the IR-induced intra-S-phase checkpoint in mammalian cells is incompletely characterized. Here, we investigated the contributions of ATM, ATR, and DNA-PKcs to intra-S-phase checkpoint activation after exposure to IR of human and hamster cells. The results suggest that the activities of both ATM and ATR are essential for efficient intra-S-phase checkpoint activation. Indeed, in a wild-type genetic background, ATR inhibition generates stronger checkpoint defects than ATM inhibition. Similar to G2 checkpoint, DNA-PKcs contributes to the recovery from the intra-S-phase checkpoint. DNA-PKcs-deficient cells show persistent, mainly ATR-dependent intra-S-phase checkpoints. A correlation between the degree of DSB end resection and the strength of the intra-S-phase checkpoint is observed, which again compares well to the G2 checkpoint response. We conclude that the organization of the intra-S-phase checkpoint has a similar mechanistic organization to that of the G2 checkpoint in cells irradiated in the G2 phase.


Subject(s)
DNA-Activated Protein Kinase , Radiation, Ionizing , Animals , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Checkpoint Kinase 1/metabolism , DNA/metabolism , DNA Damage , DNA-Activated Protein Kinase/genetics , Genomic Instability , Humans , Mammals/metabolism , Phosphorylation
6.
Cells ; 11(13)2022 07 02.
Article in English | MEDLINE | ID: mdl-35805183

ABSTRACT

The load of DNA double-strand breaks (DSBs) induced in the genome of higher eukaryotes by different doses of ionizing radiation (IR) is a key determinant of DSB repair pathway choice, with homologous recombination (HR) and ATR substantially gaining ground at doses below 0.5 Gy. Increased resection and HR engagement with decreasing DSB-load generate a conundrum in a classical non-homologous end-joining (c-NHEJ)-dominated cell and suggest a mechanism adaptively facilitating resection. We report that ablation of DNA-PKcs causes hyper-resection, implicating DNA-PK in the underpinning mechanism. However, hyper-resection in DNA-PKcs-deficient cells can also be an indirect consequence of their c-NHEJ defect. Here, we report that all tested DNA-PKcs mutants show hyper-resection, while mutants with defects in all other factors of c-NHEJ fail to do so. This result rules out the model of c-NHEJ versus HR competition and the passive shift from c-NHEJ to HR as the causes of the increased resection and suggests the integration of DNA-PKcs into resection regulation. We develop a model, compatible with the results of others, which integrates DNA-PKcs into resection regulation and HR for a subset of DSBs. For these DSBs, we propose that the kinase remains at the break site, rather than the commonly assumed autophosphorylation-mediated removal from DNA ends.


Subject(s)
DNA Breaks, Double-Stranded , DNA-Binding Proteins , DNA/metabolism , DNA End-Joining Repair , DNA-Binding Proteins/metabolism , Phenotype
7.
Cancers (Basel) ; 13(23)2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34885133

ABSTRACT

High expression of the receptor tyrosine kinase TrkA/NTRK1 is associated with a favorable outcome in several solid tumors of childhood including neuroblastoma. During development, TrkA/NTRK1 governs migration and differentiation of neuronal precursor cells, while it is associated with mitotic dysfunction and altered DNA damage response, among others, in neuroblastoma. Here, we used human neuroblastoma cell lines with inducible TrkA/NTRK1 expression to mechanistically explore the role of TrkA/NTRK1 signaling in checkpoint activation after DNA damage induced by ionizing radiation (IR). TrkA/NTRK1 activated cells showed increased short-term cell viability upon IR compared to vector control cells. This was accompanied by a deficient G2/M-checkpoint at both low (1 Gy) and high doses (4 Gy) of IR. In a tightly controlled setting, we confirmed that this effect was strictly dependent on activation of TrkA/NTRK1 by its ligand, nerve growth factor (NGF). TrkA/NTRK1-expressing cells displayed impaired ATM and CHK1 phosphorylation, resulting in stabilization of CDC25B. In line with these findings, ATM or ATR inhibition recapitulated the effects of TrkA/NTRK1 activation on the IR-induced G2/M-checkpoint. In conclusion, we here provide first evidence for a previously unrecognized function of NTRK signaling in checkpoint regulation and the response to IR.

8.
Int J Mol Sci ; 22(20)2021 Oct 11.
Article in English | MEDLINE | ID: mdl-34681628

ABSTRACT

The processing of DNA double-strand breaks (DSBs) depends on the dynamic characteristics of chromatin. To investigate how abrupt changes in chromatin compaction alter these dynamics and affect DSB processing and repair, we exposed irradiated cells to hypotonic stress (HypoS). Densitometric and chromosome-length analyses show that HypoS transiently decompacts chromatin without inducing histone modifications known from regulated local chromatin decondensation, or changes in Micrococcal Nuclease (MNase) sensitivity. HypoS leaves undisturbed initial stages of DNA-damage-response (DDR), such as radiation-induced ATM activation and H2AX-phosphorylation. However, detection of ATM-pS1981, γ-H2AX and 53BP1 foci is reduced in a protein, cell cycle phase and cell line dependent manner; likely secondary to chromatin decompaction that disrupts the focal organization of DDR proteins. While HypoS only exerts small effects on classical nonhomologous end-joining (c-NHEJ) and alternative end-joining (alt-EJ), it markedly suppresses homologous recombination (HR) without affecting DNA end-resection at DSBs, and clearly enhances single-strand annealing (SSA). These shifts in pathway engagement are accompanied by decreases in HR-dependent chromatid-break repair in the G2-phase, and by increases in alt-EJ and SSA-dependent chromosomal translocations. Consequently, HypoS sensitizes cells to ionizing radiation (IR)-induced killing. We conclude that HypoS-induced global chromatin decompaction compromises regulated chromatin dynamics and genomic stability by suppressing DSB-processing by HR, and allowing error-prone processing by alt-EJ and SSA.


Subject(s)
Chromatin/metabolism , DNA End-Joining Repair/drug effects , Homologous Recombination/drug effects , Hypotonic Solutions/pharmacology , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , Cell Cycle Checkpoints/drug effects , Cell Cycle Checkpoints/radiation effects , Cell Line , Cell Proliferation/drug effects , Chromatin/chemistry , DNA Breaks, Double-Stranded/radiation effects , DNA End-Joining Repair/radiation effects , Histones/metabolism , Homologous Recombination/radiation effects , Humans , Hypotonic Solutions/chemistry , RNA Interference , RNA, Small Interfering/metabolism , Rad52 DNA Repair and Recombination Protein/antagonists & inhibitors , Rad52 DNA Repair and Recombination Protein/genetics , Rad52 DNA Repair and Recombination Protein/metabolism , Radiation, Ionizing
9.
Article in English | MEDLINE | ID: mdl-34266628

ABSTRACT

We recently reported that when low doses of ionizing radiation induce low numbers of DNA double-strand breaks (DSBs) in G2-phase cells, about 50 % of them are repaired by homologous recombination (HR) and the remaining by classical non-homologous end-joining (c-NHEJ). However, with increasing DSB-load, the contribution of HR drops to undetectable (at ∼10 Gy) as c-NHEJ dominates. It remains unknown whether the approximately equal shunting of DSBs between HR and c-NHEJ at low radiation doses and the predominant shunting to c-NHEJ at high doses, applies to every DSB, or whether the individual characteristics of each DSB generate processing preferences. When G2-phase cells are irradiated, only about 10 % of the induced DSBs break the chromatids. This breakage allows analysis of the processing of this specific subset of DSBs using cytogenetic methods. Notably, at low radiation doses, these DSBs are almost exclusively processed by HR, suggesting that chromatin characteristics awaiting characterization underpin chromatid breakage and determine the preferential engagement of HR. Strikingly, we also discovered that with increasing radiation dose, a pathway switch to c-NHEJ occurs in the processing of this subset of DSBs. Here, we confirm and substantially extend our initial observations using additional methodologies. Wild-type cells, as well as HR and c-NHEJ mutants, are exposed to a broad spectrum of radiation doses and their response analyzed specifically in G2 phase. Our results further consolidate the observation that at doses <2 Gy, HR is the main option in the processing of the subset of DSBs generating chromatid breaks and that a pathway switch at doses between 4-6 Gy allows the progressive engagement of c-NHEJ. PARP1 inhibition, irrespective of radiation dose, leaves chromatid break repair unaffected suggesting that the contribution of alternative end-joining is undetectable under these experimental conditions.


Subject(s)
Chromatids/genetics , DNA End-Joining Repair/genetics , DNA/genetics , Homologous Recombination/genetics , Recombinational DNA Repair/genetics , Animals , CHO Cells , Cell Line , Cricetulus , DNA Breaks, Double-Stranded , DNA Repair/genetics , G2 Phase/genetics , Poly (ADP-Ribose) Polymerase-1/genetics , Radiation, Ionizing
10.
Front Public Health ; 9: 675095, 2021.
Article in English | MEDLINE | ID: mdl-34123995

ABSTRACT

While technological advances in radiation oncology have led to a more precise delivery of radiation dose and a decreased risk of side effects, there is still a need to better understand the mechanisms underlying DNA damage response (DDR) at the DNA and cytogenetic levels, and to overcome tumor resistance. To maintain genomic stability, cells have developed sophisticated signaling pathways enabling cell cycle arrest to facilitate DNA repair via the DDR-related kinases and their downstream targets, so that DNA damage or DNA replication stress induced by genotoxic therapies can be resolved. ATM, ATR, and Chk1 kinases are key mediators in DDR activation and crucial factors in treatment resistance. It is of importance, therefore, as an alternative to the conventional clonogenic assay, to establish a cytogenetic assay enabling reliable and time-efficient results in evaluating the potency of DDR inhibitors for radiosensitization. Toward this goal, the present study aims at the development and optimization of a chromosomal radiosensitivity assay using the DDR and G2-checkpoint inhibitors as a novel modification compared to the classical G2-assay. Also, it aims at investigating the strengths of this assay for rapid radiosensitivity assessments in cultured cells, and potentially, in tumor cells obtained from biopsies. Specifically, exponentially growing RPE and 82-6 hTERT human cells are irradiated during the G2/M-phase transition in the presence or absence of Caffeine, VE-821, and UCN-1 inhibitors of ATM/ATR, ATR, and Chk1, respectively, and the induced chromatid breaks are used to evaluate cell radiosensitivity and their potency for radiosensitization. The increased yield of chromatid breaks in the presence of DDR inhibitors, which underpins radiosensitization, is similar to that observed in cells from highly radiosensitive AT-patients, and is considered here as 100% radiosensitive internal control. The results highlight the potential of our modified G2-assay using VE-821 to evaluate cell radiosensitivity, the efficacy of DDR inhibitors in radiosensitization, and reinforce the concept that ATM, ATR, and Chk1 represent attractive anticancer drug targets in radiation oncology.


Subject(s)
Chromatids , DNA Repair , DNA Damage , G2 Phase Cell Cycle Checkpoints , Humans , Radiation Tolerance
11.
DNA Repair (Amst) ; 101: 103076, 2021 05.
Article in English | MEDLINE | ID: mdl-33640756

ABSTRACT

Pathways of repair of DNA double strand breaks (DSBs) cooperate with DNA damage cell cycle checkpoints to safeguard genomic stability when cells are exposed to ionizing radiation (IR). It is widely accepted that checkpoints facilitate the function of DSB repair pathways. Whether DSB repair proficiency feeds back into checkpoint activation is less well investigated. Here, we study activation of the G2-checkpoint in cells deficient in homologous recombination repair (HRR) after exposure to low IR doses (∼1 Gy) in the G2-phase. We report that in the absence of functional HRR, activation of the G2-checkpoint is severely impaired. This response is specific for HRR, as cells deficient in classical non-homologous end joining (c-NHEJ) develop a similar or stronger G2-checkpoint than wild-type (WT) cells. Inhibition of ATM or ATR leaves largely unaffected residual G2-checkpoint in HRR-deficient cells, suggesting that the G2-checkpoint engagement of ATM/ATR is coupled to HRR. HRR-deficient cells show in G2-phase reduced DSB-end-resection, as compared to WT-cells or c-NHEJ mutants, confirming the reported link between resection and G2-checkpoint activation. Strikingly, at higher IR doses (≥4 Gy) HRR-deficient cells irradiated in G2-phase activate a weak but readily detectable ATM/ATR-dependent G2-checkpoint, whereas HRR-deficient cells irradiated in S-phase develop a stronger G2-checkpoint than WT-cells. We conclude that HRR and the ATM/ATR-dependent G2-checkpoint are closely intertwined in cells exposed to low IR-doses in G2-phase, where HRR dominates; they uncouple as HRR becomes suppressed at higher IR doses. Notably, this coupling is specific for cells irradiated in G2-phase, and cells irradiated in S-phase utilize a different mechanistic setup.


Subject(s)
Ataxia Telangiectasia Mutated Proteins/metabolism , DNA Breaks, Double-Stranded , G2 Phase Cell Cycle Checkpoints , Recombinational DNA Repair , Animals , Cell Line , Cell Line, Tumor , Cricetulus/genetics , Cricetulus/metabolism , DNA/metabolism , DNA/radiation effects , DNA End-Joining Repair , Humans , Radiation Dosage , X-Rays
12.
DNA Repair (Amst) ; 89: 102828, 2020 05.
Article in English | MEDLINE | ID: mdl-32143127

ABSTRACT

Four repair pathways process DNA double-strand breaks (DSBs). Among these pathways the homologous recombination repair (HRR) subpathway of gene conversion (GC) affords error-free processing, but functions only in S- and G2-phases of the cell cycle. Classical non-homologous end-joining (c-NHEJ) operates throughout the cell cycle, but causes small deletions and translocations. Similar deficiencies in exaggerated form, combined with reduced efficiency, are associated with alternative end-joining (alt-EJ). Finally, single-strand annealing (SSA) causes large deletions and possibly translocations. Thus, processing of a DSB by any pathway, except GC, poses significant risks to the genome, making the mechanisms navigating pathway-engagement critical to genome stability. Logically, the cell ought to attempt engagement of the pathway ensuring preservation of the genome, while accommodating necessities generated by the types of DSBs induced. Thereby, inception of DNA end-resection will be key determinant for GC, SSA and alt-EJ engagement. We reported that during G2-phase, where all pathways are active, GC engages in the processing of almost 50 % of DSBs, at low DSB-loads in the genome, and that this contribution rapidly drops to nearly zero with increasing DSB-loads. At the transition between these two extremes, SSA and alt-EJ compensate, but at extremely high DSB-loads resection-dependent pathways are suppressed and c-NHEJ remains mainly active. We inquired whether in this processing framework all DSBs have similar fates. Here, we analyze in G2-phase the processing of a subset of DSBs defined by their ability to break chromosomes. Our results reveal an absolute requirement for GC in the processing of chromatid breaks at doses in the range of 1 Gy. Defects in c-NHEJ delay significantly the inception of processing by GC, but leave processing kinetics unchanged. These results delineate the essential role of GC in chromatid break repair before mitosis and classify DSBs that underpin this breakage as the exclusive substrate of GC.


Subject(s)
DNA Breaks, Double-Stranded , DNA End-Joining Repair , DNA/radiation effects , G2 Phase , Gene Conversion , Radiation, Ionizing , Animals , Chromosome Breakage , Cricetulus/genetics , DNA/metabolism , HCT116 Cells , Humans , Recombinational DNA Repair
13.
Nucleic Acids Res ; 48(4): 1905-1924, 2020 02 28.
Article in English | MEDLINE | ID: mdl-31832684

ABSTRACT

In vertebrates, genomic DNA double-strand breaks (DSBs) are removed by non-homologous end-joining processes: classical non-homologous end-joining (c-NHEJ) and alternative end-joining (alt-EJ); or by homology-dependent processes: gene-conversion (GC) and single-strand annealing (SSA). Surprisingly, these repair pathways are not real alternative options restoring genome integrity with equal efficiency, but show instead striking differences in speed, accuracy and cell-cycle-phase dependence. As a consequence, engagement of one pathway may be associated with processing-risks for the genome absent from another pathway. Characterization of engagement-parameters and their consequences is, therefore, essential for understanding effects on the genome of DSB-inducing agents, such as ionizing-radiation (IR). Here, by addressing pathway selection in G2-phase, we discover regulatory confinements in GC with consequences for SSA- and c-NHEJ-engagement. We show pronounced suppression of GC with increasing DSB-load that is not due to RAD51 availability and which is delimited but not defined by 53BP1 and RAD52. Strikingly, at low DSB-loads, GC repairs ∼50% of DSBs, whereas at high DSB-loads its contribution is undetectable. Notably, with increasing DSB-load and the associated suppression of GC, SSA gains ground, while alt-EJ is suppressed. These observations explain earlier, apparently contradictory results and advance our understanding of logic and mechanisms underpinning the wiring between DSB repair pathways.


Subject(s)
Gene Conversion/genetics , Rad51 Recombinase/genetics , Rad52 DNA Repair and Recombination Protein/genetics , Tumor Suppressor p53-Binding Protein 1/genetics , A549 Cells , Animals , DNA Breaks, Double-Stranded/radiation effects , DNA End-Joining Repair/genetics , DNA Repair/genetics , Gene Expression Regulation/radiation effects , Humans , Radiation, Ionizing
14.
Sci Rep ; 9(1): 14597, 2019 10 10.
Article in English | MEDLINE | ID: mdl-31601897

ABSTRACT

We previously reported that cells exposed to low doses of ionizing radiation (IR) in the G2-phase of the cell cycle activate a checkpoint that is epistatically regulated by ATM and ATR operating as an integrated module. In this module, ATR interphases exclusively with the cell cycle to implement the checkpoint, mainly using CHK1. The ATM/ATR module similarly regulates DNA end-resection at low IR-doses. Strikingly, at high IR-doses, the ATM/ATR coupling relaxes and each kinase exerts independent contributions to resection and the G2-checkpoint. DNA-PKcs links to the ATM/ATR module and defects cause hyper-resection and hyperactivation of G2-checkpoint at all doses examined. Surprisingly, our present report reveals that cells irradiated in S-phase utilize a different form of wiring between DNA-PKcs/ATM/ATR: The checkpoint activated in G2-phase is regulated exclusively by ATR/CHK1; similarly at high and low IR-doses. DNA end-resection supports ATR-activation, but inhibition of ATR leaves resection unchanged. DNA-PKcs and ATM link now epistatically to resection and their inhibition causes hyper-resection and ATR-dependent G2-checkpoint hyperactivation at all IR-doses. We propose that DNA-PKcs, ATM and ATR form a modular unit to regulate DSB processing with their crosstalk distinctly organized in S- and G2- phase, with strong dependence on DSB load only in G2-phase.


Subject(s)
Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/physiology , DNA Repair , DNA-Activated Protein Kinase/physiology , Epistasis, Genetic , A549 Cells , DNA Damage , Fluorescent Antibody Technique, Indirect , G2 Phase , HCT116 Cells , Humans , Phosphorylation , Radiation, Ionizing , Replication Protein A/metabolism , S Phase
15.
Sci Rep ; 9(1): 8255, 2019 06 04.
Article in English | MEDLINE | ID: mdl-31164689

ABSTRACT

Using data generated with cells exposed to ionizing-radiation (IR) in G2-phase of the cell cycle, we describe dose-dependent interactions between ATM, ATR and DNA-PKcs revealing unknown mechanistic underpinnings for two key facets of the DNA damage response: DSB end-resection and G2-checkpoint activation. At low IR-doses that induce low DSB-numbers in the genome, ATM and ATR regulate epistatically the G2-checkpoint, with ATR at the output-node, interfacing with the cell-cycle predominantly through Chk1. Strikingly, at low IR-doses, ATM and ATR epistatically regulate also resection, and inhibition of either activity fully suppresses resection. At high IR-doses that induce high DSB-numbers in the genome, the tight ATM/ATR coupling relaxes and independent outputs to G2-checkpoint and resection occur. Consequently, both kinases must be inhibited to fully suppress checkpoint activation and resection. DNA-PKcs integrates to the ATM/ATR module by regulating resection at all IR-doses, with defects in DNA-PKcs causing hyper-resection and G2-checkpoint hyper-activation. Notably, hyper-resection is absent from other c-NHEJ mutants. Thus, DNA-PKcs specifically regulates resection and adjusts the activation of the ATM/ATR module. We propose that selected DSBs are shepherd by DNA-PKcs from c-NHEJ to resection-dependent pathways for processing under the regulatory supervision of the ATM/ATR module.


Subject(s)
Ataxia Telangiectasia Mutated Proteins/genetics , DNA-Activated Protein Kinase/genetics , G2 Phase Cell Cycle Checkpoints/radiation effects , Radiation, Ionizing , Cell Cycle/genetics , Cell Cycle/radiation effects , Cell Division/genetics , Cell Division/radiation effects , Checkpoint Kinase 1/genetics , DNA Breaks, Double-Stranded/radiation effects , DNA Damage/genetics , DNA Damage/radiation effects , DNA End-Joining Repair/radiation effects , DNA-Binding Proteins/genetics , G2 Phase Cell Cycle Checkpoints/genetics , Humans , Phosphorylation/radiation effects , Signal Transduction/radiation effects
16.
Mutat Res ; 815: 10-19, 2019 05.
Article in English | MEDLINE | ID: mdl-30999232

ABSTRACT

The classical G2-assay is widely used to assess cell-radiosensitivity and cancer phenotype: Cells are exposed to low doses of ionizing-radiation (IR) and collected for cytogenetic- analysis ˜1.5 h later. In this way, chromosome-damage is measured in cells irradiated in G2-phase, without retrieving information regarding kinetics of chromosome-break-repair. Modification of the assay to include analysis at multiple time-points after IR, has enabled kinetic-analysis of chromatid-break-repair and assessment of damage in a larger proportion of G2-phase cells. This modification, however, increases the probability that at later time points not only cells irradiated in G2-phase, but also cells irradiated in S-phase will reach metaphase. However, the response of cells irradiated in G2-phase can be mechanistically different from that of cells irradiated in S-phase. Therefore, indiscriminate analysis may confound the interpretation of experiments designed to elucidate mechanisms of chromosome-break-repair and the contributions of the different DSB-repair-pathways in this response. Here we report an EdU based modification of the assay that enables S- and G2-phase specific analysis of chromatid break repair. Our results show that the majority of metaphases captured during the first 2 h after IR originate from cells irradiated in G2-phase (EdU- metaphases) in both rodent and human cells. Metaphases originating from cells irradiated in S-phase (EdU+ metaphases) start appearing at 2 h and 4 h after IR in rodent and human cells, respectively. The kinetics of chromatid-break-repair are similar in cells irradiated in G2- and S-phase of the cell-cycle, both in rodent and human cells. The protocol is applicable to classical-cytogenetic experiments and allows the cell-cycle specific analysis of chromosomal-aberrations. Finally, the protocol can be applied to the kinetic analysis of chromosome-breaks in prematurely-condensed-chromosomes of G2-phase cells. In summary, the developed protocol provides means to enhance the analysis of IR-induced-cytogenetic-damage by providing information on the cell-cycle phase where DNA damage is inflicted.


Subject(s)
Chromosome Aberrations/radiation effects , Chromosomes/genetics , Metaphase/genetics , Metaphase/radiation effects , Animals , CHO Cells , Cell Line , Cell Line, Tumor , Chromosome Breakage/drug effects , Chromosomes/radiation effects , Cricetulus , DNA Repair/genetics , DNA Repair/radiation effects , G2 Phase/genetics , G2 Phase/radiation effects , HCT116 Cells , Humans , Kinetics , Radiation, Ionizing , S Phase/genetics , S Phase/radiation effects
17.
Radiat Prot Dosimetry ; 183(1-2): 60-68, 2019 May 01.
Article in English | MEDLINE | ID: mdl-30566664

ABSTRACT

DNA double-strand break (DSB) complexity is invoked to explain the increased efficacy of high-linear energy transfer (LET) radiation. Complexity is usually defined as presence of additional lesions in the immediate proximity of the DSB. DSB-clusters represent a different level of complexity that can jeopardize processing by destabilizing chromatin in the vicinity of the cluster. DSB-clusters are generated after exposure of cells to ionizing radiation (IR), particularly high-LET radiation, and have been considered as particularly consequential in several mathematical models of IR action. Yet, experimental demonstration of their relevance to the adverse IR effects, as well as information on the mechanisms underpinning their severity as DNA lesions is lacking. We addressed this void by developing cell lines with especially designed, multiply integrated constructs modeling defined combinations of DSB-clusters through appropriately engineered I-SceI meganuclease recognition sites. Using this model system, we demonstrate efficient activation of the DNA damage response, as well as a markedly increased potential of DSB-clusters, as compared to single-DSBs, to kill cells, and cause Parp1- dependent chromosomal translocations. We propose that DSB repair relying on first line DSB-processing pathways (canonical non-homologous end joining and to some degree homologous recombination repair) is compromised within DSB clusters, presumably through the associated chromatin destabilization, leaving alternative end joining as last option and translocation formation as a natural consequence. Our observations offer a mechanistic explanation for the increased efficacy of high-LET radiation.


Subject(s)
Cell Culture Techniques , DNA Breaks, Double-Stranded/radiation effects , Linear Energy Transfer , Models, Biological , Translocation, Genetic/radiation effects , Animals , Cell Line , Cell Survival/radiation effects , Clone Cells , Cricetulus , Flow Cytometry , Fluorescent Antibody Technique, Indirect , Humans , Microscopy, Confocal , Plasmids , Polymerase Chain Reaction , Radiation, Ionizing , Transfection
18.
Mol Cancer Ther ; 17(10): 2206-2216, 2018 10.
Article in English | MEDLINE | ID: mdl-29970481

ABSTRACT

Parp inhibitors (Parpi) are commonly used as single agents for the management of tumors with homologous recombination repair (HRR) deficiencies, but combination with radiotherapy (RT) is not widely considered due to the modest radiosensitization typically observed. BMN673 is one of the most recently developed Parpi and has been shown to mediate strong cell sensitization to methylating agents. Here, we explore the mechanisms of BMN673 radiosensitization to killing, aiming to combine it with RT. We demonstrate markedly stronger radiosensitization by BMN673 at concentrations substantially lower (50 nmol/L) than olaparib (3 µmol/L) or AG14361 (0.4 µmol/L) and dramatically lower as compared with second-generation inhibitors such as PJ34 (5 µmol/L). Notably, BMN673 radiosensitization peaks after surprisingly short contact times (∼1 hour) and at pharmacologically achievable concentrations in vivo BMN673 exerts a complex set of effects on DNA double-strand break (DSB) processing, including inhibition of classic nonhomologous end-joining (cNHEJ) and alternative end-joining (altEJ) pathway at high doses of ionizing radiation (IR). BMN673 enhances resection at DSB and favors HRR and altEJ at low clinically relevant IR doses. The combined outcome of these effects is an abrogation in the inherent balance of DSB processing culminating in the formation of chromosomal translocations that underpin radiosensitization. Our observations pave the way to clinical trials exploring inherent benefits in combining BMN673 with RT for the treatment of various forms of cancer. Mol Cancer Ther; 17(10); 2206-16. ©2018 AACR.


Subject(s)
DNA Breaks, Double-Stranded/drug effects , DNA Repair/drug effects , Phthalazines/pharmacology , Poly (ADP-Ribose) Polymerase-1/antagonists & inhibitors , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Radiation Tolerance/drug effects , Radiation-Sensitizing Agents/pharmacology , Animals , CHO Cells , Cell Line, Tumor , Cricetulus , Dose-Response Relationship, Drug , Humans , Models, Biological , Radiation, Ionizing , Translocation, Genetic/drug effects , Translocation, Genetic/radiation effects
19.
J Cancer Res Clin Oncol ; 143(9): 1733-1744, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28432456

ABSTRACT

PURPOSE: DNA damage-induced cell death is a major effector mechanism of radiotherapy. Aberrant expression of anti-apoptotic BCL-2 family proteins is frequently observed in lung cancers. Against this background, we studied radioresistance mediated by BCL-2 family proteins at the mechanistic level and its potential as target for radiochemotherapy. METHODS: Lung cancer models stably expressing BCL-xL or MCL-1 were irradiated to study cell death, clonogenic survival, and DNA repair kinetics in vitro, and growth suppression of established tumors in vivo. Additionally, endogenous BCL-xL and MCL-1 were targeted by shRNA or pharmacologic agents prior to irradiation. RESULTS: Radiation exposure induced apoptosis at negligible levels. Yet, anti-apoptotic BCL-xL and MCL-1 expression conferred short-term and long-term radioresistance in vitro and in vivo. Radioresistance correlated with pertubations in homologous recombination repair and repair of DNA double-strand breaks by error-prone, alternative end-joining. Notably, genetic or pharmacologic targeting of BCL-xL or MCL-1 effectively sensitized lung cancer cells to radiotherapy. CONCLUSIONS: In addition to directly suppressing apoptosis, BCL-2 family proteins confer long-term survival benefits to irradiated cancer cells associated with utilization of error-prone repair pathways. Targeting BCL-xL and MCL-1 is an attractive strategy for improving lung cancer radiotherapy.


Subject(s)
DNA Repair/physiology , Lung Neoplasms/pathology , Proto-Oncogene Proteins c-bcl-2/metabolism , Radiation Tolerance/physiology , Animals , Apoptosis/radiation effects , Cell Line, Tumor , DNA Breaks, Double-Stranded/radiation effects , Heterografts , Humans , Lung Neoplasms/metabolism , Mice , Mice, Inbred NOD , Mice, SCID
20.
Nucleic Acids Res ; 44(16): 7673-90, 2016 09 19.
Article in English | MEDLINE | ID: mdl-27257076

ABSTRACT

Chromosome translocations are hallmark of cancer and of radiation-induced cell killing, reflecting joining of incongruent DNA-ends that alter the genome. Translocation-formation requires DNA end-joining mechanisms and incompletely characterized, permissive chromatin conditions. We show that chromatin destabilization by clusters of DNA double-strand-breaks (DSBs) generated by the I-SceI meganuclease at multiple, appropriately engineered genomic sites, compromises c-NHEJ and markedly increases cell killing and translocation-formation compared to single-DSBs. Translocation-formation from DSB-clusters utilizes Parp1 activity, implicating alt-EJ in their formation. Immunofluorescence experiments show that single-DSBs and DSB-clusters uniformly provoke the formation of single γ-H2AX foci, suggesting similar activation of early DNA damage response (DDR). Live-cell imaging also shows similar single-focus recruitment of the early-response protein MDC1, to single-DSBs and DSB-clusters. Notably, the late DDR protein, 53BP1 shows in live-cell imaging strikingly stronger recruitment to DSB-clusters as compared to single-DSBs. This is the first report that chromatin thripsis, in the form of engineered DSB-clusters, compromises first-line DSB-repair pathways, allowing alt-EJ to function as rescuing-backup. DSB-cluster-formation is indirectly linked to the increased biological effectiveness of high ionization-density radiations, such as the alpha-particles emitted by radon gas or the heavy-ions utilized in cancer therapy. Our observations provide the first direct mechanistic explanation for this long-known effect.


Subject(s)
Chromosomes, Mammalian/metabolism , Chromothripsis , DNA Breaks, Double-Stranded , Translocation, Genetic , Tumor Suppressor p53-Binding Protein 1/metabolism , Animals , CHO Cells , Cell Death , Clone Cells , Cricetinae , Cricetulus , DNA Repair , Deoxyribonucleases, Type II Site-Specific/metabolism , Genome , Green Fluorescent Proteins/metabolism , Metaphase , Saccharomyces cerevisiae Proteins/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...