Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Free Neuropathol ; 12020 Jan.
Article in English | MEDLINE | ID: mdl-37283668

ABSTRACT

We have previously shown that treatment of female NOD mice with a potent nonselective histone deacetylase inhibitor attenuated experimental autoimmune encephalomyelitis, a model for progressive multiple sclerosis. Herein we show that immunization with the MOG35-55 peptide induced prolonged upregulation of genes encoding interleukin 17A (IL-17A), aryl hydrocarbon receptor, and histone deacetylase 11 in the spinal cord whereas the subunits of IL-27, IL-27p28 and IL-27ebi3 were significantly increased in secondary lymphoid organs after a lag period. Interestingly, the nitric oxide synthase gene was prominently expressed in both of these anatomic compartments following immunization. Treatment with the histone modifier repressed the transcription of all of these genes induced by immunization. Moreover, the drug suppressed the steady-state levels of the migration inhibitory factor and CD274 genes in both the spinal cord and peripheral lymphoid tissues. At the same time, the CD39 gene was downregulated only in secondary lymphoid organs. Paradoxically, the epigenetic drug enhanced the expression of Declin-1 in the spinal cord, suggesting a protective role in neuronal disease. Immunization profoundly enhanced transcription of the chemokine CCL2 in the secondary lymphoid tissues without a corresponding increase in the translation of CCL2 protein. Histone hyperacetylation neither altered the transcription of CCL2 nor its cognate receptor CCR2 in the central nervous system and peripheral lymphoid tissues. Surprisingly, the drug did not exert modulatory influence on most other immune response-related genes previously implicated in encephalomyelitis. Nevertheless, our data uncover several potential molecular targets for the intervention of experimental autoimmune encephalomyelitis that have implications for the treatment of progressive multiple sclerosis.

2.
Neurobiol Dis ; 108: 1-12, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28736194

ABSTRACT

Multiple sclerosis is a T cell mediated chronic demyelinating disease of the central nervous system. Although currently available therapies reduce relapses, they do not facilitate tolerization of myelin antigen-specific T lymphocytes to ensure prolonged protection against multiple sclerosis. Here, we show that treatment of NOD mice with the histone deacetylase inhibitor, Trichostatin A affords robust protection against myelin peptide induced experimental autoimmune encephalomyelitis, a mouse model of multiple sclerosis. Protection was accompanied by histone hyperacetylation, and reduced inflammation and axonal damage in the spinal cord. Drug treatment diminished the generation of CD4+ memory T cells and induced tolerance in CD4+ T cells recognizing the immunizing myelin peptide. During the early immunization period, CD4+ T cells producing GM-CSF+IFN-γ, GM-CSF+IL-17A, as well as those expressing both IL-17A+IFN-γ (double-producers) were detected in the secondary lymphoid organs followed by the appearance of cells producing IFN-γ and GM-CSF. On the other hand, IFN-γ producing Th1 cells appear first in the spinal cord followed by cells producing IL-17A and GM-CSF. Treatment with Trichostatin A substantially reduced the frequencies of all T cells secreting various lymphokines both in the periphery and in the spinal cord. These data indicate that epigenetic modifications induced by histone hyperacetylation facilitates T cell tolerance induction in the periphery leading to reduced migration of T cells to the spinal cord and mitigation of neuronal damage and improved clinical outcome. These results suggest that epigenetic modulation of the genome may similarly offer benefits to multiple sclerosis patients via abrogating the function of encephalitogenic T lymphocytes without exerting severe side effects associated with currently used disease-modifying therapies.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/drug therapy , Hydroxamic Acids/pharmacology , Neuroprotective Agents/pharmacology , Spinal Cord/drug effects , T-Lymphocyte Subsets/drug effects , Animals , Encephalomyelitis, Autoimmune, Experimental/pathology , Encephalomyelitis, Autoimmune, Experimental/physiopathology , Epigenesis, Genetic/drug effects , Female , Histones/drug effects , Histones/metabolism , Lymphoid Tissue/drug effects , Lymphoid Tissue/metabolism , Mice, Inbred NOD , Myelin-Oligodendrocyte Glycoprotein , Peptide Fragments , Random Allocation , Spinal Cord/pathology , Spinal Cord/physiopathology , T-Lymphocyte Subsets/pathology , T-Lymphocyte Subsets/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...