Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 7(6): 5069-5078, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-35187323

ABSTRACT

Novel finding of aldehyde in 2-oxoaldehyde (2OA) is presented as it unprecedentedly disinclines to react with Grignard reagents but reacts with moderate organocuprate reagents in anaerobic condition to give [1,2] addition (α-hydroxyketones) reaction. In the presence of air, the reaction produces an efficient protocol for the synthesis of 1,2-diones through a copper-catalyzed oxidative cross-coupling reaction at room temperature. Mechanistic studies indicate that α-hydroxy ketone perhaps is generated before the hydrolysis step/acid work-up process. The α-keto group of 2OA causes to exhibit this peculiar aldehyde behavior toward these organometallic reagents.

2.
Bioorg Chem ; 115: 105206, 2021 10.
Article in English | MEDLINE | ID: mdl-34339975

ABSTRACT

With the aim to discover potent and novel antitumor agents, a series of thiourea compounds bearing 3-(4-methoxyphenyl)azetidine moiety were designed according to the essential pharmacophoric features of the reported VEGFR-2 inhibitors and synthesized. All the synthesized compounds were evaluated for their in vitro anticancer activity against various human cancer cell lines (lung (A549), prostate (PC3), breast (MCF-7), liver (HepG2), colon (HCT-116), ovarian (SKOV-3), skin (A431), brain (U251) and kidney (786-O)). 3-(4-Methoxy-3-(2-methoxypyridin-4-yl)phenyl)-N-(4-methoxyphenyl)azetidine-1-carbothioamide (3B) was found to be most potent member against PC3, U251, A431, and 786-O cancer cell lines with EC50 values 0.25, 0.6, 0.03, and 0.03 µM, respectively and showed more potency than Doxorubicin in PC3, A431, and 786-O cell lines. Compounds 1B to 7B showed EC50 values ranging from 0.03 to 12.55 µM in A431 cell line. Compound 3-(4-methoxy-3-(pyridin-4-yl)phenyl)-N-(4-methoxyphenyl)azetidine-1-carbothioamide (1B) was found to be highly efficient in A431 and 786-O cell line with EC50 values of 0.77 and 0.73 µM respectively. All the compounds exhibited good to moderate cytotoxic activity. The pharmacophoric features and molecular docking studies confirmed the potentialities of compounds 1B, 2B, 3B and 5B to be VEGFR-2 inhibitors. Moreover, in silico ADMET prediction indicated that most of the synthesized compounds have drug-like properties, possess low adverse effects and toxicity. In addition, the DFT studies for the most active compounds (1B and 3B) were carried out. In the end, our studies revealed that the compounds 1B and 3B represent promising anticancer potentialities through their VEGFR-2 inhibition.


Subject(s)
Antineoplastic Agents/pharmacology , Azetidines/pharmacology , Density Functional Theory , Molecular Docking Simulation , Protein Kinase Inhibitors/pharmacology , Thiourea/pharmacology , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Azetidines/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Discovery , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship , Thiourea/chemistry , Vascular Endothelial Growth Factor Receptor-2/metabolism
3.
Arch Pharm (Weinheim) ; 354(11): e2100062, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34184778

ABSTRACT

Azetidines are almost unexplored among nitrogen-containing saturated heterocycles due to difficulties associated with their synthesis. However, over the past few years, attempts have been made by scientists to advance their synthetic feasibility. Compounds with the azetidine moiety display an important and diverse range of pharmacological activities, such as anticancer, antibacterial, antimicrobial, antischizophrenic, antimalarial, antiobesity, anti-inflammatory, antidiabetic, antiviral, antioxidant, analgesic, and dopamine antagonist activities, and are also useful for the treatment of central nervous system disorders and so forth. Owing to its satisfactory stability, molecular rigidity, and chemical and biological properties, azetidine has emerged as a valuable scaffold and it has drawn the attention of medicinal researchers. The present review sheds light on the traditional method of synthesis of azetidine and advancements in synthetic methodology over the past few years, along with its application with various examples, and its biological significance.


Subject(s)
Azetidines/pharmacology , Drug Development/methods , Animals , Azetidines/chemistry , Drug Stability , Humans , Structure-Activity Relationship
4.
Bioorg Chem ; 46: 26-30, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23247257

ABSTRACT

Starch nanoparticles (StNPs) were acylated under ambient conditions to obtain various nanosized derivatives formed stable suspension in water and soluble in organic solvents. The degree of substitution (DS) was determined using (1)H NMR technique. The cytotoxicity potential of the derivatised StNPs was evaluated in mouse embryonic fibroblast (3T3L1) cells and A549 tumor cell line using MTT cell viability assay. Other parameters that determine the oxidative stress viz., reactive oxygen species (ROS) generation, intracellular reduced glutathione (GSH), superoxide generation and acridine orange/ethidium bromide staining were also investigated. The present study led to the conclusion that cytotoxic activity of acylated starch nanoparticles was dependent on their dosage, DS and type of substitution. The non-toxic nature in non-cancerous cells reveals that the nanoparticles (NPs) can be used for cancer therapy and drug delivery. The nanoparticles also offered reasonable binding propensity with CT-DNA.


Subject(s)
Drug Carriers/chemistry , Drug Carriers/toxicity , Nanoparticles/chemistry , Nanoparticles/toxicity , Starch/chemistry , Starch/toxicity , 3T3-L1 Cells , Acylation , Animals , Cattle , Cell Line, Tumor , Cell Survival/drug effects , DNA/metabolism , Drug Carriers/chemical synthesis , Humans , Mice , Nanoparticles/ultrastructure , Starch/chemical synthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...