Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Bioorg Med Chem Lett ; 27(15): 3317-3325, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28610984

ABSTRACT

Herein we disclose SAR studies that led to a series of isoindoline ureas which we recently reported were first-in-class, non-substrate nicotinamide phosphoribosyltransferase (NAMPT) inhibitors. Modification of the isoindoline and/or the terminal functionality of screening hit 5 provided inhibitors such as 52 and 58 with nanomolar antiproliferative activity and preclinical pharmacokinetics properties which enabled potent antitumor activity when dosed orally in mouse xenograft models. X-ray crystal structures of two inhibitors bound in the NAMPT active-site are discussed.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cytokines/antagonists & inhibitors , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Nicotinamide Phosphoribosyltransferase/antagonists & inhibitors , Urea/analogs & derivatives , Urea/pharmacology , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Cell Proliferation/drug effects , Crystallography, X-Ray , Cytokines/chemistry , Cytokines/metabolism , Drug Discovery , Enzyme Inhibitors/pharmacokinetics , Enzyme Inhibitors/therapeutic use , Humans , Isoindoles/chemistry , Isoindoles/pharmacokinetics , Isoindoles/pharmacology , Isoindoles/therapeutic use , Mice , Models, Molecular , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Nicotinamide Phosphoribosyltransferase/chemistry , Nicotinamide Phosphoribosyltransferase/metabolism , Structure-Activity Relationship , Urea/pharmacokinetics , Urea/therapeutic use
2.
Bioorg Med Chem Lett ; 27(10): 2225-2233, 2017 05 15.
Article in English | MEDLINE | ID: mdl-28268136

ABSTRACT

An NMR fragment screen for binders to the bromodomains of BRD4 identified 2-methyl-3-ketopyrroles 1 and 2. Elaboration of these fragments guided by structure-based design provided lead molecules with significant activity in a mouse tumor model. Further modifications to the methylpyrrole core provided compounds with improved properties and enhanced activity in a mouse model of multiple myeloma.


Subject(s)
Antineoplastic Agents/chemistry , Nuclear Proteins/antagonists & inhibitors , Pyrroles/chemistry , Transcription Factors/antagonists & inhibitors , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/therapeutic use , Binding Sites , Cell Line, Tumor , Cell Proliferation/drug effects , Crystallography, X-Ray , Drug Design , Half-Life , Humans , Mice , Molecular Dynamics Simulation , Multiple Myeloma/drug therapy , Nuclear Proteins/metabolism , Pyrroles/chemical synthesis , Pyrroles/pharmacokinetics , Pyrroles/therapeutic use , Structure-Activity Relationship , Transcription Factors/metabolism , Transplantation, Heterologous
3.
ACS Med Chem Lett ; 6(6): 695-700, 2015 Jun 11.
Article in English | MEDLINE | ID: mdl-26101576

ABSTRACT

A lack of useful small molecule tools has precluded thorough interrogation of the biological function of SMYD2, a lysine methyltransferase with known tumor-suppressor substrates. Systematic exploration of the structure-activity relationships of a previously known benzoxazinone compound led to the synthesis of A-893, a potent and selective SMYD2 inhibitor (IC50: 2.8 nM). A cocrystal structure reveals the origin of enhanced potency, and effective suppression of p53K370 methylation is observed in a lung carcinoma (A549) cell line.

4.
ACS Med Chem Lett ; 6(1): 58-62, 2015 Jan 08.
Article in English | MEDLINE | ID: mdl-25589931

ABSTRACT

Aided by molecular modeling, compounds with a pyrimidine-based tricyclic scaffold were designed and confirmed to inhibit Wee1 kinase. Structure-activity studies identified key pharmacophores at the aminoaryl and halo-benzene regions responsible for binding affinity with sub-nM K i values. The potent inhibitors demonstrated sub-µM activities in both functional and mechanism-based cellular assays and also possessed desirable pharmacokinetic profiles. The lead molecule, 31, showed oral efficacy in potentiating the antiproliferative activity of irinotecan, a cytotoxic agent, in a NCI-H1299 mouse xenograft model.

5.
ACS Med Chem Lett ; 5(2): 205-9, 2014 Feb 13.
Article in English | MEDLINE | ID: mdl-24900801

ABSTRACT

G9a is a histone lysine methyltransferase responsible for the methylation of histone H3 lysine 9. The discovery of A-366 arose from a unique diversity screening hit, which was optimized by incorporation of a propyl-pyrrolidine subunit to occupy the enzyme lysine channel. A-366 is a potent inhibitor of G9a (IC50: 3.3 nM) with greater than 1000-fold selectivity over 21 other methyltransferases.

6.
ACS Med Chem Lett ; 4(2): 211-5, 2013 Feb 14.
Article in English | MEDLINE | ID: mdl-24900653

ABSTRACT

To investigate the role played by the unique pre-DFG residue Val 195 of Cdc7 kinase on the potency of azaindole-chloropyridines (1), a series of novel analogues with various chloro replacements were synthesized and evaluated for their inhibitory activity against Cdc7. X-ray cocrystallization using a surrogate protein, GSK3ß, and modeling studies confirmed the azaindole motif as the hinge binder. Weaker hydrophobic interactions with Met 134 and Val 195 by certain chloro replacements (e.g., H, methyl) led to reduced Cdc7 inhibition. Meanwhile, data from other replacements (e.g., F, O) indicated that loss of such hydrophobic interaction could be compensated by enhanced hydrogen bonding to Lys 90. Our findings not only provide an in-depth understanding of the pre-DFG residue as another viable position impacting kinase inhibition, they also expand the existing knowledge of ligand-Cdc7 binding.

8.
J Med Chem ; 52(21): 6803-13, 2009 Nov 12.
Article in English | MEDLINE | ID: mdl-19888760

ABSTRACT

Small molecule inhibitors of PARP-1 have been pursued by various organizations as potential therapeutic agents either capable of sensitizing cytotoxic treatments or acting as stand-alone agents to combat cancer. As one of the strategies to expand our portfolio of PARP-1 inhibitors, we pursued unsaturated heterocycles to replace the saturated cyclic amine derivatives appended to the benzimidazole core. Not only did a variety of these new generation compounds maintain high enzymatic potency, many of them also displayed robust cellular activity. For example, the enzymatic IC(50) and cellular EC(50) values were as low as 1 nM or below. Compounds 24 (EC(50) = 3.7 nM) and 44 (EC(50) = 7.8 nM), featuring an oxadiazole and a pyridine moiety, respectively, demonstrated balanced potency and PK profiles. In addition, these two molecules exhibited potent oral in vivo efficacy in potentiating the cytotoxic agent temozolomide in a B16F10 murine melanoma model.


Subject(s)
Antineoplastic Agents/chemical synthesis , Benzimidazoles/chemical synthesis , Oxadiazoles/chemical synthesis , Poly(ADP-ribose) Polymerase Inhibitors , Pyridines/chemical synthesis , Administration, Oral , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Antineoplastic Agents, Alkylating , Benzimidazoles/pharmacokinetics , Benzimidazoles/pharmacology , Biological Availability , Cell Line, Tumor , Dacarbazine/analogs & derivatives , Dacarbazine/pharmacology , Drug Synergism , Female , Humans , Male , Melanoma, Experimental/drug therapy , Mice , Mice, Inbred C57BL , Neoplasm Transplantation , Oxadiazoles/pharmacokinetics , Oxadiazoles/pharmacology , Poly (ADP-Ribose) Polymerase-1 , Pyridines/pharmacokinetics , Pyridines/pharmacology , Structure-Activity Relationship , Temozolomide , Transplantation, Heterologous
9.
J Med Chem ; 52(21): 6621-36, 2009 Nov 12.
Article in English | MEDLINE | ID: mdl-19842661

ABSTRACT

Pim-1, Pim-2, and Pim-3 are a family of serine/threonine kinases which have been found to be overexpressed in a variety of hematopoietic malignancies and solid tumors. Benzothienopyrimidinones were discovered as a novel class of Pim inhibitors that potently inhibit all three Pim kinases with subnanomolar to low single-digit nanomolar K(i) values and exhibit excellent selectivity against a panel of diverse kinases. Protein crystal structures of the bound Pim-1 complexes of benzothienopyrimidinones 3b (PDB code 3JYA), 6e (PDB code 3JYO), and 12b (PDB code 3JXW) were determined and used to guide SAR studies. Multiple compounds exhibited potent antiproliferative activity in K562 and MV4-11 cells with submicromolar EC(50) values. For example, compound 14j inhibited the growth of K562 cells with an EC(50) value of 1.7 muM and showed K(i) values of 2, 3, and 0.5 nM against Pim-1, Pim-2, and Pim-3, respectively. These novel Pim kinase inhibitors efficiently interrupted the phosphorylation of Bad in both K562 and LnCaP-Bad cell lines, indicating that their potent biological activities are mechanism-based. The pharmacokinetics of 14j was studied in CD-1 mice and shown to exhibit bioavailability of 76% after oral dosing. ADME profiling of 14j suggested a long half-life in both human and mouse liver microsomes, good permeability, modest protein binding, and no CYP inhibition below 20 muM concentration.


Subject(s)
Antineoplastic Agents/chemical synthesis , Proto-Oncogene Proteins c-pim-1/antagonists & inhibitors , Pyrimidines/chemical synthesis , Pyrimidinones/chemical synthesis , Thiophenes/chemical synthesis , Administration, Oral , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Biological Availability , Cell Line, Tumor , Cell Membrane Permeability , Humans , In Vitro Techniques , Mice , Microsomes, Liver/metabolism , Models, Molecular , Phosphorylation , Protein Conformation , Proto-Oncogene Proteins c-pim-1/chemistry , Pyrimidines/pharmacokinetics , Pyrimidines/pharmacology , Pyrimidinones/pharmacokinetics , Pyrimidinones/pharmacology , Structure-Activity Relationship , Thiophenes/pharmacokinetics , Thiophenes/pharmacology , bcl-Associated Death Protein/metabolism
11.
J Med Chem ; 51(5): 1231-41, 2008 Mar 13.
Article in English | MEDLINE | ID: mdl-18260617

ABSTRACT

A series of benzoisoxazoles and benzoisothiazoles have been synthesized and evaluated as inhibitors of receptor tyrosine kinases (RTKs). Structure-activity relationship studies led to the identification of 3-amino benzo[ d]isoxazoles, incorporating a N, N'-diphenyl urea moiety at the 4-position that potently inhibited both the vascular endothelial growth factor receptor (VEGFR) and platelet-derived growth factor receptor families of RTKs. Within this series, orally bioavailable compounds possessing promising pharmacokinetic profiles were identified, and a number of compounds demonstrated in vivo efficacy in models of VEGF-stimulated vascular permeability and tumor growth. In particular, compound 50 exhibited an ED 50 of 2.0 mg/kg in the VEGF-stimulated uterine edema model and 81% inhibition in the human fibrosarcoma (HT1080) tumor growth model when given orally at a dose of 10 mg/kg/day.


Subject(s)
Isoxazoles/chemical synthesis , Models, Molecular , Oxazoles/chemical synthesis , Phenylurea Compounds/chemical synthesis , Receptors, Platelet-Derived Growth Factor/antagonists & inhibitors , Receptors, Vascular Endothelial Growth Factor/antagonists & inhibitors , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Binding Sites , Biological Availability , Capillary Permeability/drug effects , Cell Line , Cell Line, Tumor , Edema/drug therapy , Female , Humans , Isoxazoles/pharmacokinetics , Isoxazoles/pharmacology , Mice , Mice, Inbred BALB C , NIH 3T3 Cells , Oxazoles/pharmacokinetics , Oxazoles/pharmacology , Phenylurea Compounds/pharmacokinetics , Phenylurea Compounds/pharmacology , Phosphorylation , Structure-Activity Relationship , Uterus/blood supply , Xenograft Model Antitumor Assays
12.
Mol Cancer Ther ; 5(4): 995-1006, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16648571

ABSTRACT

ABT-869 is a structurally novel, receptor tyrosine kinase (RTK) inhibitor that is a potent inhibitor of members of the vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF) receptor families (e.g., KDR IC50 = 4 nmol/L) but has much less activity (IC50s > 1 micromol/L) against unrelated RTKs, soluble tyrosine kinases, or serine/threonine kinases. The inhibition profile of ABT-869 is evident in cellular assays of RTK phosphorylation (IC50 = 2, 4, and 7 nmol/L for PDGFR-beta, KDR, and CSF-1R, respectively) and VEGF-stimulated proliferation (IC50 = 0.2 nmol/L for human endothelial cells). ABT-869 is not a general antiproliferative agent because, in most cancer cells, >1,000-fold higher concentrations of ABT-869 are required for inhibition of proliferation. However, ABT-869 exhibits potent antiproliferative and apoptotic effects on cancer cells whose proliferation is dependent on mutant kinases, such as FLT3. In vivo ABT-869 is effective orally in the mechanism-based murine models of VEGF-induced uterine edema (ED50 = 0.5 mg/kg) and corneal angiogenesis (>50% inhibition, 15 mg/kg). In tumor growth studies, ABT-869 exhibits efficacy in human fibrosarcoma and breast, colon, and small cell lung carcinoma xenograft models (ED50 = 1.5-5 mg/kg, twice daily) and is also effective (>50% inhibition) in orthotopic breast and glioma models. Reduction in tumor size and tumor regression was observed in epidermoid carcinoma and leukemia xenograft models, respectively. In combination, ABT-869 produced at least additive effects when given with cytotoxic therapies. Based on pharmacokinetic analysis from tumor growth studies, efficacy correlated more strongly with time over a threshold value (cellular KDR IC50 corrected for plasma protein binding = 0.08 microg/mL, >or=7 hours) than with plasma area under the curve or Cmax. These results support clinical assessment of ABT-869 as a therapeutic agent for cancer.


Subject(s)
Enzyme Inhibitors/pharmacology , Indazoles/pharmacology , Phenylurea Compounds/pharmacology , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , 3T3 Cells , Animals , Cell Cycle/drug effects , Cell Division/drug effects , Cornea , Edema , Female , Mice , Neovascularization, Physiologic/drug effects , Phosphorylation , Receptors, Platelet-Derived Growth Factor/antagonists & inhibitors , Receptors, Platelet-Derived Growth Factor/metabolism , Receptors, Vascular Endothelial Growth Factor/antagonists & inhibitors , Receptors, Vascular Endothelial Growth Factor/metabolism , Retinal Vessels/drug effects , Retinal Vessels/physiology , Uterus/drug effects , Uterus/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...