Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Energy Mater ; 6(11): 5671-5680, 2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37323207

ABSTRACT

It is widely accepted that the commercial application of lithium-sulfur batteries is inhibited by their short cycle life, which is primarily caused by a combination of Li dendrite formation and active material loss due to polysulfide shuttling. Unfortunately, while numerous approaches to overcome these problems have been reported, most are unscalable and hence further hinder Li-S battery commercialization. Most approaches suggested also only tackle one of the primary mechanisms of cell degradation and failure. Here, we demonstrate that the use of a simple protein, fibroin, as an electrolyte additive can both prevent Li dendrite formation and minimize active material loss to enable high capacity and long cycle life (up to 500 cycles) in Li-S batteries, without inhibiting the rate performance of the cell. Through a combination of experiments and molecular dynamics (MD) simulations, it is demonstrated that the fibroin plays a dual role, both binding to polysulfides to hinder their transport from the cathode and passivating the Li anode to minimize dendrite nucleation and growth. Most importantly, as fibroin is inexpensive and can be simply introduced to the cell via the electrolyte, this work offers a route toward practical industrial applications of a viable Li-S battery system.

2.
Nanoscale ; 11(16): 7893-7902, 2019 Apr 23.
Article in English | MEDLINE | ID: mdl-30964498

ABSTRACT

Fe-Nx and Fe-S-based ORR electrocatalysts have emerged as rightful candidates to replace Pt in fuel cells to make the technology cheap and sustainable. Fe-N-C catalysts are generally prepared by the pyrolysis of conducting polymers, metal-organic frameworks, aerogels, etc., and the combination of multiple heteroatoms and metal precursors. These precursors are mostly expensive and their synthesis involves multiple steps. In this report, we have demonstrated the synthesis of a Fe-N-C catalyst from the waste leather obtained from the footwear and other leather-consuming industries. The pyrolysis of leather with FeCl3 (metal source) results in the formation of a highly thin and porous nano-ribbon like morphology. Waste leather acts as a cost-free single source of heteroatoms like N, S and carbon. The catalyst synthesized at a temperature of 900 °C shows an overpotential of 40 mV and better durability compared to the commercial Pt/C catalyst. The catalyst is demonstrated as the cathode for alkaline exchange membrane fuel cell (AEMFC) and zinc-air battery (ZAB) applications. In the AEMFC, a power density of 50 mW cm-2 and an OCV of 0.92 V are obtained whereas, in the ZAB, it exhibited a power density of 174 mW cm-2 compared to 160 mW cm-2 of the system based on the Pt/C catalyst.

3.
Nanoscale ; 10(18): 8741-8751, 2018 May 10.
Article in English | MEDLINE | ID: mdl-29707713

ABSTRACT

The maximum capacitive potential window of certain pseudocapacitive materials cannot be accessed in aqueous electrolytes owing to the low dissociation potential of 1.2 V possessed by water molecules. However, the inferior pseudocapacitance exhibited by the commonly used electrode materials when integrated with non-aqueous electrolytes still remains a challenge in the development of supercapacitors (SC). Proper selection of materials for the electrode and a rational design process are indeed important to overcome these practical intricacies so that such systems can perform well with non-aqueous electrolytes. We address this challenge by fabricating a prototype all-solid-state device designed with high-capacitive V2O5 as the electrode material along with a Li-ion conducting organic electrolyte. V2O5 is synthesized on a pre-treated carbon-fibre paper by adopting an electrochemical deposition technique that effects an improved contact resistance. A judicious electrode preparation strategy makes it possible to overcome the constraints of the low ionic and electrical conductivities imposed by the electrolyte and electrode material, respectively. The device, assembled in a symmetrical fashion, achieves a high specific capacitance of 406 F g-1 (at 1 A g-1). The profitable aspect of using an organic electrolyte is also demonstrated with an asymmetric configuration by using activated carbon as the positive and V2O5 as the negative electrode materials, respectively. The asymmetric device displays a wide working-voltage window of 2.8 V and delivers a high energy density of 102.68 W h kg-1 at a power density of 1.49 kW kg-1. Moreover, the low equivalent series resistance of 9.9 Ω and negligible charge transfer resistance are observed in the impedance spectra, which is a key factor that accounts for such an exemplary performance.

4.
ACS Appl Mater Interfaces ; 10(1): 676-686, 2018 Jan 10.
Article in English | MEDLINE | ID: mdl-29243906

ABSTRACT

Polyaniline (PANI) as a pseudocapacitive material has very high theoretical capacitance of 2000 F g-1. However, its practical capacitance has been limited by low electrochemical surface area (ESA) and unfavorable wettability toward aqueous electrolytes. This work deals with a strategy wherein the high ESA of PANI has been achieved by the induction of superhydrophilicity together with the alignment of PANI exclusively on the surface of carbon fibers as a thin layer to form a hybrid assembly. Superhydrophilicity is induced by electrochemical functionalization of the Toray carbon paper, which further induces superhydrophilicity to the electrodeposited PANI layer on the paper, thereby ensuring a high electrode-electrolyte interface. The Toray paper is electrochemically functionalized by the anodization method, which generates a highly active electrochemical surface as well as greater wettability (superhydrophilic) of the carbon fibers. Because of the strong interaction of anilinium chloride with the hydrophilic carbon surface, PANI is polymerized exclusively over the surface of the fibers without any appreciable aggregation or agglomeration of the polymer. The PANI-Toray paper assembly in the solid-state prototype supercapacitor can provide a high gravimetric capacitance of 1335 F g-1 as well as a high areal capacitance of 1.3 F cm-2 at a current density of 10 A g-1. The device also exhibits high rate capability, delivering 1217 F g-1 at a current density of 50 A g-1 and a high energy density of 30 W h kg-1 at a power density of 2 kW kg-1.

5.
Nanoscale ; 9(10): 3593-3600, 2017 Mar 09.
Article in English | MEDLINE | ID: mdl-28247886

ABSTRACT

Development of flexible supercapacitors is limited by the availability of flexible and durable conducting substrates; a conducting and cheap substrate for the active material deposition is essential for breakthrough progress in this direction. In this report, a highly flexible, conducting, and cheap substrate is prepared by simple stick and peel-off method involving Scotch tape and Grafoil. A Grafoil-Scotch tape derived flexible substrate exhibits a sheet resistance of 7 Ω â–¡-1 along with a high degree of flexibility and durability. Moreover, its properties are further enhanced by the anodization in order to increase the hydrophilicity and surface area. The substrate is highly thin with a thickness of just 74 µm. Its practical utility has been demonstrated by electrodepositing MnO2 as an active material and, thereafter, fabricating a solid-state flexible supercapacitor. The fabricated device exhibits high capacitance retention under bent (99%) and twisted (98%) conditions along with a low ESR of 7 Ω.

6.
ACS Appl Mater Interfaces ; 8(1): 553-62, 2016 Jan 13.
Article in English | MEDLINE | ID: mdl-26652291

ABSTRACT

Here, we report the preparation of a flexible, free-standing, Pt- and TCO-free counter electrode in dye-sensitized solar cell (DSSC)-derived from polyethylenedioxythiophene (PEDOT)-impregnated cellulose paper. The synthetic strategy of making the thin flexible PEDOT paper is simple and scalable, which can be achieved via in situ polymerization all through a roll coating technique. The very low sheet resistance (4 Ω/□) obtained from a film of 40 µm thick PEDOT paper (PEDOT-p-5) is found to be superior to the conventional fluorine-doped tin oxide (FTO) substrate. The high conductivity (357 S/cm) displayed by PEDOT-p-5 is observed to be stable under ambient conditions as well as flexible and bending conditions. With all of these features in place, we could develop an efficient Pt- and TCO-free flexible counter electrode from PEDOT-p-5 for DSSC applications. The catalytic activity toward the tri-iodide reduction of the flexible electrode is analyzed by adopting various electrochemical methodologies. PEDOT-p-5 is found to display higher exchange current density (7.12 mA/cm(2)) and low charge transfer resistance (4.6 Ω) compared to the benchmark Pt-coated FTO glass (2.40 mA/cm(2) and 9.4 Ω, respectively). Further, a DSSC fabricated using PEDOT-p-5 as the counter electrode displays a comparable efficiency of 6.1% relative to 6.9% delivered by a system based on Pt/FTO as the counter electrode.

SELECTION OF CITATIONS
SEARCH DETAIL
...