Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Virol ; 89(18): 9440-53, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26136573

ABSTRACT

UNLABELLED: Lipid-enveloped viruses replicate and bud from the host cell where they acquire their lipid coat. Ebola virus, which buds from the plasma membrane of the host cell, causes viral hemorrhagic fever and has a high fatality rate. To date, little has been known about how budding and egress of Ebola virus are mediated at the plasma membrane. We have found that the lipid phosphatidylserine (PS) regulates the assembly of Ebola virus matrix protein VP40. VP40 binds PS-containing membranes with nanomolar affinity, and binding of PS regulates VP40 localization and oligomerization on the plasma membrane inner leaflet. Further, alteration of PS levels in mammalian cells inhibits assembly and egress of VP40. Notably, interactions of VP40 with the plasma membrane induced exposure of PS on the outer leaflet of the plasma membrane at sites of egress, whereas PS is typically found only on the inner leaflet. Taking the data together, we present a model accounting for the role of plasma membrane PS in assembly of Ebola virus-like particles. IMPORTANCE: The lipid-enveloped Ebola virus causes severe infection with a high mortality rate and currently lacks FDA-approved therapeutics or vaccines. Ebola virus harbors just seven genes in its genome, and there is a critical requirement for acquisition of its lipid envelope from the plasma membrane of the human cell that it infects during the replication process. There is, however, a dearth of information available on the required contents of this envelope for egress and subsequent attachment and entry. Here we demonstrate that plasma membrane phosphatidylserine is critical for Ebola virus budding from the host cell plasma membrane. This report, to our knowledge, is the first to highlight the role of lipids in human cell membranes in the Ebola virus replication cycle and draws a clear link between selective binding and transport of a lipid across the membrane of the human cell and use of that lipid for subsequent viral entry.


Subject(s)
Cell Membrane/metabolism , Ebolavirus/physiology , Hemorrhagic Fever, Ebola/metabolism , Phosphatidylserines/metabolism , Virus Assembly/physiology , Virus Release/physiology , Animals , CHO Cells , Cell Membrane/pathology , Cell Membrane/virology , Chlorocebus aethiops , Cricetulus , HEK293 Cells , Hemorrhagic Fever, Ebola/pathology , Humans , Viral Matrix Proteins/metabolism
2.
J Biol Chem ; 289(48): 33590-7, 2014 Nov 28.
Article in English | MEDLINE | ID: mdl-25315776

ABSTRACT

Ebola virus is from the Filoviridae family of viruses and is one of the most virulent pathogens known with ∼ 60% clinical fatality. The Ebola virus negative sense RNA genome encodes seven proteins including viral matrix protein 40 (VP40), which is the most abundant protein found in the virions. Within infected cells VP40 localizes at the inner leaflet of the plasma membrane (PM), binds lipids, and regulates formation of new virus particles. Expression of VP40 in mammalian cells is sufficient to form virus-like particles that are nearly indistinguishable from the authentic virions. However, how VP40 interacts with the PM and forms virus-like particles is for the most part unknown. To investigate VP40 lipid specificity in a model of viral egress we employed giant unilamellar vesicles with different lipid compositions. The results demonstrate VP40 selectively induces vesiculation from membranes containing phosphatidylserine (PS) at concentrations of PS that are representative of the PM inner leaflet content. The formation of intraluminal vesicles was not significantly detected in the presence of other important PM lipids including cholesterol and polyvalent phosphoinositides, further demonstrating PS selectivity. Taken together, these studies suggest that PM phosphatidylserine may be an important component of Ebola virus budding and that VP40 may be able to mediate PM scission.


Subject(s)
Ebolavirus/chemistry , Membranes, Artificial , Phosphatidylserines/chemistry , Viral Matrix Proteins/chemistry , Ebolavirus/metabolism , Models, Biological , Phosphatidylserines/metabolism , Viral Matrix Proteins/metabolism , Virus Release/physiology
3.
Viruses ; 6(10): 3837-54, 2014 Oct 17.
Article in English | MEDLINE | ID: mdl-25330123

ABSTRACT

Ebola virus (EBOV) causes viral hemorrhagic fever in humans and can have clinical fatality rates of ~60%. The EBOV genome consists of negative sense RNA that encodes seven proteins including viral protein 40 (VP40). VP40 is the major Ebola virus matrix protein and regulates assembly and egress of infectious Ebola virus particles. It is well established that VP40 assembles on the inner leaflet of the plasma membrane of human cells to regulate viral budding where VP40 can produce virus like particles (VLPs) without other Ebola virus proteins present. The mechanistic details, however, of VP40 lipid-interactions and protein-protein interactions that are important for viral release remain to be elucidated. Here, we mutated a loop region in the N-terminal domain of VP40 (Lys127, Thr129, and Asn130) and find that mutations (K127A, T129A, and N130A) in this loop region reduce plasma membrane localization of VP40. Additionally, using total internal reflection fluorescence microscopy and number and brightness analysis we demonstrate these mutations greatly reduce VP40 oligomerization. Lastly, VLP assays demonstrate these mutations significantly reduce VLP release from cells. Taken together, these studies identify an important loop region in VP40 that may be essential to viral egress.


Subject(s)
Ebolavirus/genetics , Hemorrhagic Fever, Ebola/virology , Viral Matrix Proteins/genetics , Virus Assembly , Virus Release , Cell Line , Cell Membrane/metabolism , Dimerization , Ebolavirus/physiology , Humans , Models, Molecular , Mutation , Protein Domains , Viral Matrix Proteins/chemistry , Viral Matrix Proteins/metabolism
4.
Biophys J ; 104(9): 1940-9, 2013 May 07.
Article in English | MEDLINE | ID: mdl-23663837

ABSTRACT

Ebola virus, from the Filoviridae family has a high fatality rate in humans and nonhuman primates and to date, to the best of our knowledge, has no FDA approved vaccines or therapeutics. Viral protein 40 (VP40) is the major Ebola virus matrix protein that regulates assembly and egress of infectious Ebola virus particles. It is well established that VP40 assembles on the inner leaflet of the plasma membrane; however, the mechanistic details of VP40 membrane binding that are important for viral release remain to be elucidated. In this study, we used fluorescence quenching of a tryptophan on the membrane-binding interface with brominated lipids along with mutagenesis of VP40 to understand the depth of membrane penetration into lipid bilayers. Experimental results indicate that VP40 penetrates 8.1 Å into the hydrocarbon core of the plasma membrane bilayer. VP40 also induces substantial changes to membrane curvature as it tubulates liposomes and induces vesiculation into giant unilamellar vesicles, effects that are abrogated by hydrophobic mutations. This is a critical step in viral egress as cellular assays demonstrate that hydrophobic residues that penetrate deeply into the plasma membrane are essential for plasma membrane localization and virus-like particle formation and release from cells.


Subject(s)
Cell Membrane/virology , Nucleoproteins/metabolism , Viral Core Proteins/metabolism , Virus Release , Amino Acid Sequence , Bromine/chemistry , Lipid Bilayers/chemistry , Liposomes/chemistry , Molecular Sequence Data , Mutagenesis , Nucleoproteins/chemistry , Nucleoproteins/genetics , Protein Structure, Tertiary , Surface Plasmon Resonance , Tryptophan/chemistry , Tryptophan/genetics , Viral Core Proteins/chemistry , Viral Core Proteins/genetics
5.
J Biol Chem ; 288(8): 5779-89, 2013 Feb 22.
Article in English | MEDLINE | ID: mdl-23297401

ABSTRACT

Ebola, a fatal virus in humans and non-human primates, has no Food and Drug Administration-approved vaccines or therapeutics. The virus from the Filoviridae family causes hemorrhagic fever, which rapidly progresses and in some cases has a fatality rate near 90%. The Ebola genome encodes seven genes, the most abundantly expressed of which is viral protein 40 (VP40), the major Ebola matrix protein that regulates assembly and egress of the virus. It is well established that VP40 assembles on the inner leaflet of the plasma membrane; however, the mechanistic details of plasma membrane association by VP40 are not well understood. In this study, we used an array of biophysical experiments and cellular assays along with mutagenesis of VP40 to investigate the role of membrane penetration in VP40 assembly and egress. Here we demonstrate that VP40 is able to penetrate specifically into the plasma membrane through an interface enriched in hydrophobic residues in its C-terminal domain. Mutagenesis of this hydrophobic region consisting of Leu(213), Ile(293), Leu(295), and Val(298) demonstrated that membrane penetration is critical to plasma membrane localization, VP40 oligomerization, and viral particle egress. Taken together, VP40 membrane penetration is an important step in the plasma membrane localization of the matrix protein where oligomerization and budding are defective in the absence of key hydrophobic interactions with the membrane.


Subject(s)
Ebolavirus/metabolism , Gene Expression Regulation, Viral , Nucleoproteins/physiology , Viral Core Proteins/physiology , Viral Matrix Proteins/physiology , Animals , Biophysics/methods , CHO Cells , Cell Membrane/enzymology , Cell Membrane/metabolism , Cricetinae , DNA/genetics , Fatty Acid-Binding Proteins/chemistry , HEK293 Cells , Humans , Hydrophobic and Hydrophilic Interactions , Lipids/chemistry , Models, Molecular , Molecular Conformation , Mutagenesis , Nucleoproteins/chemistry , Protein Structure, Tertiary , Viral Core Proteins/chemistry , Viral Matrix Proteins/metabolism
6.
Biochemistry ; 48(46): 11097-107, 2009 Nov 24.
Article in English | MEDLINE | ID: mdl-19817487

ABSTRACT

We employed solid state (2)H NMR, complemented by computer simulations, to compare molecular organization in model membranes composed of 1-elaidoyl-2-stearoylphosphatidylcholine (t18:1-18:0PC), 1-oleoyl-2-stearoylphosphatidylcholine (c18:1-18:0PC), and 1,2-distearoylphosphatidylcholine (18:0-18:0PC). These phospholipids have elaidic acid (EA) containing a trans double bond, oleic acid (OA) containing a cis double bond, and saturated stearic acid (SA), respectively, at the sn-1 position and were synthesized with perdeuterated SA at the sn-2 position. The temperature of the chain melting transition is depressed less for t18:1-18:0PC (31.5 degrees C) than c18:1-18:0PC (7 degrees C) relative to 18:0-18:0PC (53 degrees C), reflecting the smaller deviation from the linear conformation produced by a trans as opposed to cis double bond. Acyl chain order in t18:1-18:0PC (S(CD) = 0.135) in the liquid crystalline state is much closer to that of c18:1-18:0PC (S(CD) = 0.128) than that of the substantially more ordered 18:0-18:0PC (S(CD) > 0.156), which is attributed to the reduced energy barrier to rotation about the C-C single bonds next to either a trans or cis carbon double bond. A conformation that somewhat resembles a saturated chain and an intrinsic disorder approaching that of a cis unsaturated chain characterize EA and, we speculate, may play a role in the adverse impact dietary trans fatty acids (TFA) have on biological function.


Subject(s)
Lipid Bilayers/chemistry , Phosphatidylcholines/chemistry , Trans Fatty Acids/chemistry , Algorithms , Magnetic Resonance Spectroscopy , Molecular Dynamics Simulation , Oleic Acid/chemistry , Oleic Acids , Phase Transition , Temperature , Transition Temperature
7.
Biochim Biophys Acta ; 1788(11): 2421-6, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19735642

ABSTRACT

A central tenet of the lipid raft model is the existence of non-raft domains. In support of this view, we have established in model membranes that a phosphatidylethanolamine (PE)-containing docosahexaenoic acid (DHA) forms organizationally distinct non-raft domains in the presence of sphingomyelin (SM) and cholesterol (Chol). We have shown that formation of DHA-rich domains is driven by unfavorable molecular interactions between the rigid Chol molecule and the highly flexible DHA acyl chain. However, the molecular interactions between SM and the DHA-containing PE, which could also contribute to the formation of DHA-rich non-raft domains, have not been sufficiently investigated. To address this issue, we use differential scanning calorimetry (DSC) to study the phase behavior of mixtures of SM with either 1-palmitoyl-2-docosahexaenoyl-sn-glycero-3-phosphoethanolamine (16:0-22:6PE) or 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (16:0-18:1PE), an oleic acid (OA)-containing control, over a wide range of concentrations. Deconvolution of binary DSC scans shows that both 16:0-22:6PE and 16:0-18:1PE phase separate from SM. Analysis of transition temperatures and partial phase diagrams, constructed from the DSC scans for the first time, shows that 16:0-22:6PE displays greater non-ideal mixing with SM compared to 16:0-18:1PE. Our findings support a model in which DHA- and OA-containing PEs differentially phase separate from SM over a wide range of molar ratios to initiate the formation of non-raft domains, which is greatly enhanced by DHA, but not OA, in the presence of cholesterol.


Subject(s)
Docosahexaenoic Acids/chemistry , Lipid Bilayers/chemistry , Membrane Microdomains/chemistry , Oleic Acid/chemistry , Phase Transition , Sphingomyelins/chemistry , Calorimetry, Differential Scanning
8.
Biophys J ; 95(1): 203-14, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18339742

ABSTRACT

Solid-state (2)H-NMR of [(2)H(31)]-N-palmitoylsphingomyelin ([(2)H(31)]16:0SM, PSM*), supplemented by differential scanning calorimetry, was used for the first time, to our knowledge, to investigate the molecular organization of the sphingolipid in 1:1:1 mol mixtures with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (16:0-18:1PE, POPE) or 1-palmitoyl-2-docosahexaenoyl-sn-glycero-3-phosphoethanolamine (16:0-22:6PE, PDPE) and cholesterol. When compared with (2)H-NMR data for analogous mixtures of [(2)H(31)]16:0-18:1PE (POPE*) or [(2)H(31)]16:0-22:6PE (PDPE*) with egg SM and cholesterol, molecular interactions of oleic acid (OA) versus docosahexaenoic acid (DHA) are distinguished, and details of membrane architecture emerge. SM-rich, characterized by higher-order, and PE-rich, characterized by lower-order, domains <20 nm in size are formed in the absence and presence of cholesterol in both OA- and DHA-containing membranes. Although acyl chain order within both domains increases on the addition of sterol to the two systems, the resultant differential in order between SM- and PE-rich domains is almost a factor of 3 greater with DHA than with OA. Our interpretation is that the aversion that cholesterol has for DHA--but not for OA--excludes the sterol from DHA-containing, PE-rich (nonraft) domains and excludes DHA from SM-rich/cholesterol-rich (raft) domains. We attribute, in part, the diverse health benefits associated with dietary consumption of DHA to an alteration in membrane domains.


Subject(s)
Docosahexaenoic Acids/chemistry , Hydrogen/chemistry , Lipid Bilayers/chemistry , Magnetic Resonance Spectroscopy , Models, Chemical , Complex Mixtures/chemistry , Computer Simulation , Models, Molecular
9.
J Am Chem Soc ; 128(16): 5375-83, 2006 Apr 26.
Article in English | MEDLINE | ID: mdl-16620109

ABSTRACT

The major mammalian plasma membrane lipids are phosphatidylcholines (PCs), phosphatidylethanolamines (PEs), and cholesterol. Whereas PC-cholesterol interactions are well studied, far less is known about those between PE and cholesterol. Here, we investigated the molecular organization of cholesterol in PEs that vary in their degree of acyl chain unsaturation. For heteroacid sn-1 saturated (palmitoyl), sn-2 unsaturated (various acyl chain) PEs, cholesterol solubility determined by X-ray diffraction was essentially identical with 1 (oleoyl, 51 +/- 3 mol %) and 2 (linoleoyl, 49 +/- 2 mol %) double bonds before decreasing progressively with 4 (arachidonyl, 41 +/- 3 mol %) and 6 (docosahexaenoyl, 31 +/- 3 mol %) double bonds. With 6 double bonds in each chain, cholesterol solubility was further reduced to 8.5 +/- 1 mol %. However, (2)H NMR experiments established that the orientation of cholesterol in the same heteroacid PE membranes was unaffected by the degree of acyl chain unsaturation. A tilt angle of 15 +/- 1 degrees was measured when equimolar [3alpha-(2)H(1)]cholesterol was added, regardless of the number of double bonds in the sn-2 chain. The finding that solubility of cholesterol in sn-1 saturated PEs depends on the amount of polyunsaturation in the sn-2 chain of PE differs from the equivalent PCs that universally incorporate approximately 50 mol % sterol. Unlike PCs, a differential in affinity for cholesterol and tendency to drive lateral segregation is inferred between polyunsaturated PEs. This distinction may have biological implications reflected by the health benefits of dietary polyunsaturated fatty acids that are often taken up into PE > PC.


Subject(s)
Cholesterol/chemistry , Nuclear Magnetic Resonance, Biomolecular/methods , Phosphatidylcholines/chemistry , Phosphatidylethanolamines/chemistry , X-Ray Diffraction/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...