Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Crit Rev Biotechnol ; 43(1): 100-120, 2023 Feb.
Article in English | MEDLINE | ID: mdl-34923890

ABSTRACT

Glucosamine (GlcN) and its derivatives are in high demand and used in various applications such as food, a precursor for the biochemical synthesis of fuels and chemicals, drug delivery, cosmetics, and supplements. The vast number of applications attributed to GlcN has raised its demand, and there is a growing emphasis on developing production methods that are sustainable and economical. Several: physical, chemical, enzymatic, microbial fermentation, recombinant processing methods, and their combinations have been reported to produce GlcN from chitin and chitosan available from different sources, such as animals, plants, and fungi. In addition, genetic manipulation of certain organisms has significantly improved the quality and yield of GlcN compared to conventional processing methods. This review will summarize the chitin and chitosan-degrading enzymes found in various organisms and the expression systems that are widely used to produce GlcN. Furthermore, new developments and methods, including genetic and metabolic engineering of Escherichia coli and Bacillus subtilis to produce high titers of GlcN and GlcNAc will be reviewed. Moreover, other sources of glucosamine production viz. starch and inorganic ammonia will also be discussed. Finally, the conversion of GlcN to fuels and chemicals using catalytic and biochemical conversion will be discussed.


Subject(s)
Chitosan , Glucosamine , Glucosamine/metabolism , Chitin , Escherichia coli/metabolism , Fungi/metabolism
2.
J Glob Antimicrob Resist ; 31: 167-174, 2022 12.
Article in English | MEDLINE | ID: mdl-36055548

ABSTRACT

OBJECTIVES: The use of antibiotics in human medicine and livestock production has contributed to the widespread occurrence of Antimicrobial Resistance (AMR). Recognizing the relevance of AMR to human and livestock health, it is important to assess the occurrence of genetic determinants of resistance in medical, veterinary, and public health settings in order to understand risks of transmission and treatment failure. Advances in next-generation sequencing technologies have had a significant impact on research in microbial genetics and microbiome analyses. The aim of the present study was to compare the Illumina MiSeq and Ion Torrent S5 Plus sequencing platforms for the analysis of AMR genes in a veterinary/public health setting. METHODS: All samples were processed in parallel for the two sequencing technologies, subsequently following a common bioinformatics workflow to define the occurrence and abundance of AMR gene sequences. The Comprehensive Antibiotic Resistance Database (CARD), QIAGEN Microbial Insight - Antimicrobial Resistance, Antimicrobial resistance database, and Comprehensive Antibiotic Resistance Database developed by CLC bio (CARD-CLC) databases were compared for analysis, with the most genes identified using CARD. RESULTS: Drawing on these results, we described an end-to-end workflow for the analysis of AMR genes a using advances in next-generation sequencing. No statistically significant differences were observed among any other genes except the tet-(40) gene between two sequencing platforms, which may be due to the short amplicon length. CONCLUSIONS: Irrespective of sequencing chemistry and platform used, comparative analysis of AMR genes and candidate host organism suggest that the Illumina MiSeq and Ion Torrent platforms performed almost equally. Regardless of sequencing platform, the results were closely comparable with minor differences.


Subject(s)
Anti-Bacterial Agents , Anti-Infective Agents , Humans , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , High-Throughput Nucleotide Sequencing/methods , Computational Biology/methods
3.
Bioresour Technol ; 339: 125597, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34315089

ABSTRACT

Conventional fuel resources are overburden with speedy global energy demand which ensued the urgent need of alternate energy resources. Biofuel generation efficiency of microalgae is notable due to their comparatively rapid biomass production rate and high oil content. But, the employment of microalgae as biofuel resource is in infancy due to low productivity and high production cost. The issues can be addressed by employing engineered microalgal strains that would be able to efficiently generate enhanced levels of biomass with augmented lipid and/or carbohydrate content for proficient biofuel production. Genetic alterations and metabolic engineering of microalgal species might be helpful in developing high stress-tolerant strains with improved properties for biofuel generation. Various omics approaches appeared significant to upgrade the microalgal lipid production. Intervention of genetic and metabolic engineering approaches would facilitate the development of microalgae as a competent biofuel resource and inflate the economic commercialization of biofuels.


Subject(s)
Microalgae , Biofuels , Biomass , Lipids , Metabolic Engineering , Microalgae/genetics
4.
Front Chem ; 8: 469, 2020.
Article in English | MEDLINE | ID: mdl-32671017

ABSTRACT

Chitooligosaccharides (COS) and N-acetyl glucosamine (GlcNAc) are currently of enormous relevance to pharmaceutical, nutraceutical, cosmetics, food, and agriculture industries due to their wide range of biological activities, which include antimicrobial, antitumor, antioxidant, anticoagulant, wound healing, immunoregulatory, and hypocholesterolemic effects. A range of methods have been developed for the synthesis of COS with a specific degree of polymerization along with high production titres. In this respect, chemical, enzymatic, and microbial means, along with modern genetic manipulation techniques, have been extensively explored; however no method has been able to competently produce defined COS and GlcNAc in a mono-system approach. Henceforth, the chitin research has turned toward increased exploration of chemoenzymatic processes for COS and GlcNAc generation. Recent developments in the area of green chemicals, mainly ionic liquids, proved vital for the specified COS and GlcNAc synthesis with better yield and purity. Moreover, engineering of COS and GlcNAc to generate novel derivatives viz. carboxylated, sulfated, phenolic acid conjugated, amino derived COS, etc., further improved their biological activities. Consequently, chemoenzymatic synthesis and engineering of COS and GlcNAc emerged as a useful approach to lead the biologically-active compound-based biomedical research to an advanced prospect in the forthcoming era.

SELECTION OF CITATIONS
SEARCH DETAIL
...