Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Mater Sci Eng C Mater Biol Appl ; 33(4): 2376-85, 2013 May 01.
Article in English | MEDLINE | ID: mdl-23498272

ABSTRACT

In this study for the first time, we compared physico-chemical and biological properties of polycaprolactone-gelatin-hydroxyapatite scaffolds of two types: one in which the nano-hydroxyapatite (n-HA) was deposited on the surface of electrospun polycaprolactone-gelatin (PCG) fibers via alternate soaking process (PCG-HAAS) and other in which hydroxyapatite (HA) powders were blended in electrospinning solution of PCG (PCG-HAB). The microstructure of fibers was examined by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) which showed n-HA particles on the surface of the PCG-HAAS scaffold and embedded HA particles in the interior of the PCG-HAB fibers. PCG-HAAS fibers exhibited the better Young's moduli and tensile strength as compared to PCG-HAB fibers. Biological properties such as cell proliferation, cell attachment and alkaline phosphatase activity (ALP) were determined by growing human osteosarcoma cells (MG-63) over the scaffolds. Cell proliferation and confocal results clearly indicated that the presence of hydroxyapatite on the surface of the PCG-HAAS scaffold promoted better cellular adhesion and proliferation as compared to PCG-HAB scaffold. ALP activity was also observed better in alternate soaked PCG scaffold as compared to PCG-HAB scaffold. Mechanical strength and biological properties clearly demonstrate that surface deposited HA scaffold prepared by alternate soaking method may find application in bone tissue engineering.


Subject(s)
Durapatite/pharmacology , Gelatin/pharmacology , Materials Testing/methods , Mechanical Phenomena/drug effects , Nanostructures/chemistry , Polyesters/pharmacology , Tissue Scaffolds/chemistry , Adsorption , Alkaline Phosphatase/metabolism , Biocompatible Materials/pharmacology , Cell Adhesion/drug effects , Cell Proliferation/drug effects , Elastic Modulus/drug effects , Humans , Microscopy, Atomic Force , Nanofibers/ultrastructure , Nanostructures/ultrastructure , Osteoblasts/cytology , Osteoblasts/drug effects , Osteoblasts/enzymology , Osteoblasts/ultrastructure , Thermogravimetry , X-Ray Diffraction
3.
Health Care Can ; 20(10): 16-7, 1978 Oct.
Article in English | MEDLINE | ID: mdl-10238966
SELECTION OF CITATIONS
SEARCH DETAIL