Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 15(20)2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37896296

ABSTRACT

Tailored porous structures of poly(2-hydroxyethyl methacrylate) (PHEMA) and silk sericin (SS) were used to create porous hydrogel scaffolds using two distinct crosslinking systems. These structures were designed to closely mimic the porous nature of the native extracellular matrix. Conventional free radical polymerization of 2-hydroxyethyl methacrylate (HEMA) was performed in the presence of different concentrations of SS (1.25, 2.50, 5.00% w/v) with two crosslinking systems. A chemical crosslinking system with N'N-methylene bisacrylamide (MBAAm) and a physical crosslinking system with dimethylurea (DMU) were used: C-PHEMA/SS (crosslinked using MBAAm) and C-PHEMA/pC-SS (crosslinked using MBAAm and DMU). The focus of this study was on investigating the impact of these crosslinking methods on various properties of the scaffolds, including pore size, pore characteristics, polymerization time, morphology, molecular interaction, in vitro degradation, thermal properties, and in vitro cytotoxicity. The various crosslinked networks were found to appreciably influence the properties of the scaffolds, especially the pore sizes, in which smaller sizes and higher numbers of pores with high regularity were seen in C-PHEMA/1.25 pC-SS (17 ± 2 µm) than in C-PHEMA/1.25 SS (34 ± 3 µm). Semi-interpenetrating networks were created by crosslinking PHEMA-MBAAm-PHEMA while incorporating free protein molecules of SS within the networks. The additional crosslinking step involving DMU occurred through hydrogen bonding of the -C=O and -N-H groups with the SS, resulting in the simultaneous incorporation of DMU and SS within the PHEMA networks. As a consequence of this process, the scaffold C-PHEMA/pC-SS exhibited smaller pore sizes compared to scaffolds without DMU crosslinking. Moreover, the incorporation of higher loadings of SS led to even smaller pore sizes. Additionally, the gelation time of C-PHEMA/pC-SS was delayed due to the presence of DMU in the crosslinking system. Both porous hydrogel scaffolds, C-PHEMA/pC-SS and PHEMA, were found to be non-cytotoxic to the normal human skin dermal fibroblast cell line (NHDF cells). This promising result indicates that these hydrogel scaffolds have potential for use in tissue engineering applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...