Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bull Environ Contam Toxicol ; 111(1): 4, 2023 Jun 22.
Article in English | MEDLINE | ID: mdl-37347310

ABSTRACT

Wetland plants are gaining interest as potential agents for removing emerging contaminants. However, there have been limited studies examining the ability of these plant species to remove antibiotics and their tolerance to stress. This study aimed to investigate the potential of Canna indica, an indigenous wetland plant species in India, for tetracycline-induced oxidative stress, antioxidant activity, and removal of antibiotics from nutrient media and domestic wastewater. Canna indica exhibited a removal rate of approximately 91.05 ± 0.18% for tetracycline in antibiotic containing nutrient media and 87.97 ± 0.39% in domestic wastewater. Notably, the exposure to the drug during the 30 d reaction period led to the accumulation of reactive oxygen species in the plant tissues. Consequently, there was a decline in chlorophyll content, alongside an increase in antioxidant activity, membrane permeability, and K + ion leakage. These findings emphasize the importance of monitoring tolerance levels induced by antibiotics in plant species. Thus, monitoring the antibiotic-induced-tolerance levels in plant species is crucial for maintaining plant health and effectively managing abiotic stress, ensuring efficient recovery and facilitating an effective wetland treatment system.


Subject(s)
Antioxidants , Zingiberales , Hydroponics , Wastewater , Tetracycline/toxicity , Anti-Bacterial Agents/toxicity , Wetlands , Biodegradation, Environmental
2.
Water Environ Res ; 93(10): 1882-1909, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34129692

ABSTRACT

Constructed wetland systems (CWs) are biologically and physically engineered systems to mimic the natural wetlands which can potentially treat the wastewater from the various point and nonpoint sources of pollution. The present study aims to review the various mechanisms involved in the different types of CWs for wastewater treatment and to elucidate their role in the effective functioning of the CWs. Several physical, chemical, and biological processes substantially influence the pollutant removal efficiency of CWs. Plants species Phragmites australis, Typha latifolia, and Typha angustifolia are most widely used in CWs. The rate of nitrogen (N) removal is significantly affected by emergent vegetation cover and type of CWs. Hybrid CWs (HCWS) removal efficiency for nutrients, metals, pesticides, and other pollutants is higher than a single constructed wetland. The contaminant removal efficiency of the vertical subsurface flow constructed wetlands (VSSFCW) commonly used for the treatment of domestic and municipal wastewater ranges between 31% and 99%. Biochar/zeolite addition as substrate material further enhances the wastewater treatment of CWs. Innovative components (substrate materials, plant species) and factors (design parameters, climatic conditions) sustaining the long-term sink of the pollutants, such as nutrients and heavy metals in the CWs should be further investigated in the future. PRACTITIONER POINTS: Constructed wetland systems (CWs) are efficient natural treatment system for on-site contaminants removal from wastewater. Denitrification, nitrification, microbial and plant uptake, sedimentation and adsorption are crucial pollutant removal mechanisms. Phragmites australis, Typha latifolia, and Typha angustifolia are widely used emergent plants in constructed wetlands. Hydraulic retention time (HRT), water flow regimes, substrate, plant, and microbial biomass substantially affect CWs treatment performance.


Subject(s)
Environmental Pollutants , Water Pollutants, Chemical , Water Purification , Waste Disposal, Fluid , Wastewater/analysis , Water Pollutants, Chemical/analysis , Wetlands
SELECTION OF CITATIONS
SEARCH DETAIL
...