Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 7(1): 12190, 2017 09 22.
Article in English | MEDLINE | ID: mdl-28939829

ABSTRACT

We introduced a novel water-gated field effect transistor (WG-FET) which uses 16-nm-thick mono-Si film as active layer. WG-FET devices use electrical double layer (EDL) as gate insulator and operate under 1 V without causing any electrochemical reactions. Performance parameters based on voltage distribution on EDL are extracted and current-voltage relations are modelled. Both probe- and planar-gate WG-FETs with insulated and uninsulated source-drain electrodes are simulated, fabricated and tested. Best on/off ratios are measured for probe-gate devices as 23,000 A/A and 85,000 A/A with insulated and uninsulated source-drain electrodes, respectively. Planar-gate devices with source-drain insulation had inferior on/off ratio of 1,100 A/A with 600 µm gate distance and it decreased to 45 A/A when gate distance is increased to 3000 µm. Without source-drain electrode insulation, proper transistor operation is not obtained with planar-gate devices. All measurement results were in agreement with theoretical models. WG-FET is a promising device platform for microfluidic applications where sensors and read-out circuits can be integrated at transistor level.

2.
Nanotechnology ; 23(24): 245203, 2012 Jun 22.
Article in English | MEDLINE | ID: mdl-22640956

ABSTRACT

A solution state polymer diode, which uses regioregular poly(3-hexylthiophene-2,5-diyl) (P3HT):dichlorobenzene solution as the semiconductor between highly doped p-type silicon and aluminum electrodes has been built. Electrodes separated by a 40 nm gap enable intra-chain charge carrier transfer through the lengths of single polymer chains. This prevents chain to chain hopping and chain entanglements, increasing carrier mobility. The degradation with time and hysteresis effects of the diodes are measured. An optimal P3HT solution concentration of 6 mg ml(-1) is found. A current density of at least 300 mA cm(-2) is achieved, indicating at least a six-fold improvement in carrier mobility compared to previously fabricated solid state P3HT diodes.

SELECTION OF CITATIONS
SEARCH DETAIL
...